TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Verestiuc, L. A1 - Panne, Ulrich T1 - Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity N2 - Cost-effective water cleaning approaches using improved Treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic. KW - Bisphenol A KW - Magnetic nanocatalyst KW - Endocrine disruptor KW - Nanoparticle KW - Photodegradation KW - Fenton PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-448297 SN - 2045-2322 VL - 8 SP - Article 6278, 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-44829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Prediction of biotransformation products of the fungicide fluopyram by electrochemistry coupled online to liquid chromatography-mass spectrometry and comparison with in vitro microsomal assays N2 - Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. KW - Metabolism KW - EC/LC/MS KW - Electrochemical oxidation KW - Biotransformation KW - SDHI-fungicide PY - 2018 UR - https://link.springer.com/article/10.1007%2Fs00216-018-0933-x#citeas U6 - https://doi.org/10.1007/s00216-018-0933-x SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 10 SP - 2607 EP - 2617 PB - Springer CY - Heidelberg AN - OPUS4-44491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Panne, Ulrich T1 - Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application N2 - Singlet oxygen generation potential of two novel free-base-porphyrin photocatalysts was investigated. The freebase-porphyrin-sensitized Fe3O4 magnetic nanoparticles (MNPs) were tested for the degradation of the model pollutant Bisphenol A (BPA) in aqueous solution, for the first time. MNPs with either cubic or spherical shape were synthesized using the sonochemical approach, followed by sensitizing with photoactive 4,4′,4′′,4′′′- (Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP). The resulted photocatalysts were characterized in detail by scanning and transmission electron microscopy, Brunauer–Emmett–Teller analysis, spectral techniques and vibrating sample magnetometry. The electron spin resonance experiments have confirmed the high activity of the photocatalysts through the efficient formation of singlet oxygen in solution. The optimum operational parameters for BPA degradation were established as follows: 1.0 μmol L−1 BPA, 1.0 g L−1 of photocatalyst, 100 μmol L−1 H2O2, under UVA irradiation. In these conditions, the results for both photocatalysts revealed that after only 10 min of reaction, over 64% and ca. 90% of BPA have been removed from solution in the absence and presence of H2O2, respectively. Whereas after 60 minutes of treatment, only 24% of BPA in real wastewater effluent samples were removed under UVA irradiation in the absence of H2O2, showing the high complexity of real wastewater. Moreover, both photocatalysts were successfully used for BPA removal in three consecutive runs, without significant loss of catalytic features. KW - Bisphenol A KW - Magnetpartikel KW - Photooxidation KW - Singulettsauerstoff KW - TEM KW - SEM KW - Brunauer-Emmett-Teller KW - Katalysator KW - Abwasser KW - ESR PY - 2018 U6 - https://doi.org/10.1016/j.apcatb.2018.03.079 SN - 0926-3373 VL - 232 SP - 553 EP - 561 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-45267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Weidner, Steffen A1 - Rurack, Knut A1 - Thünemann, Andreas A1 - Sturm, Heinz T1 - Polymerwissenschaften@BAM - Sicherheit macht Märkte N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine Ressortforschungseinrichtung, die zum Schutz von Mensch, Umwelt und Sachgüter, forscht, prüft und berät. Im Fokus aller Tätigkeiten in der Materialwissenschaft, der Werkstofftechnik und der Chemie steht dabei die technische Sicherheit von Produkten und Prozessen. Dazu werden Substanzen, Werkstoffe, Bauteile, Komponenten und Anlagen sowie natürliche und technische Systeme erforscht und auf sicheren Umgang oder Betrieb geprüft und bewertet. Schwerpunkt des Vortrages sind multimodale Polymeranalytik, nanoskalige Sensormaterialien und die Charakterisierung von technischen Eigenschaften von Polymeren sowie ihre Alterung und Umweltrelevanz. T2 - Institutsvortrag CY - Fraunhofer IAP, Potsdam, Germany DA - 18.05.2018 KW - Polymerwissenschaften PY - 2018 AN - OPUS4-45243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 U6 - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - New photodegradation products of the fungicide fluopyram: Structural elucidation and mechanism identification N2 - Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular. KW - Photodegradation KW - Transformation products KW - LC-MS/MS KW - HRMS KW - Fungicide PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-466347 SN - 1420-3049 VL - 23 IS - 11 SP - 2940, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-46634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loehr, Konrad A1 - Jakubowski, Norbert A1 - Wanka, Antje Jutta A1 - Traub, Heike A1 - Panne, Ulrich T1 - Quantification of metals in single cells by LA-ICP-MS comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10 σ) of 12 fg for Ir and 30 fg for Ho and quantified 57 ± 35 fg Ir and 1,192 ± 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of ~60,000 cells, 54 % of Ir content and 358 % Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Single cell analysis KW - LA-ICP-MS PY - 2018 U6 - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - Royal Society of Chemistry AN - OPUS4-45903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 U6 - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema F. A1 - Byrne, Liam A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Investigation of chlorpyrifos and its transformation products in fruits and spices by combining electrochemistry and liquid chromatography coupled to tandem mass spectrometry N2 - The identification of transformation products (TPs) of pesticides in food is a crucial task difficult to tackle, due to the lack of standards. In this work, we present a novel methodology to synthesize five main TP standards of the insecticide chlorpyrifos (CPF) and to investigate their occurrence in selected fruits and spices. TPs were electrochemically (EC) synthesized using a boron-doped diamond electrode (BDD) and identified by EC coupled online to mass spectrometry, LC-MS/MS, and high-resolution mass spectrometry. CPF and its TPs were analyzed in the food samples by LC-MS/MS on multiple reaction monitoring (MRM) after dispersive solid-phase extraction. A good recovery of 83–103% for CPF and 65–85% for TPs was obtained. Matrix effects, which cause signal suppression, ranged between 81 to 95% for all targeted analytes. The limit of detection and quantification for CPF were 1.6–1.9 and 4.9–5.7 μg/kg, respectively. Among investigated samples, CPF was determined in fresh lemon (104 μg/kg), fenugreek seed (40 μg/kg), and black pepper (31 μg/kg). CPF content in all samples was lower than the EU maximum residue level (MRL). The most frequently detected TPs were diethylthiophosphate and diethylphosphate. Other TPs, CPF oxon and trichloropyridinol, were also detected. Hence, EC is a versatile tool to synthesize TP standards which enables the determination of contaminants and residues in foodstuffs even if no commercial standards are available. KW - Transformation product KW - Electrochemistry KW - QuEChERS KW - LC-MS/MS KW - Photodegradation KW - Foodstuffs PY - 2018 UR - https://link.springer.com/article/10.1007/s12161-018-1245-7#citeas U6 - https://doi.org/10.1007/s12161-018-1245-7 SN - 1936-9751 SN - 1936-976X VL - 11 IS - 10 SP - 2657 EP - 2665 PB - Springer AN - OPUS4-45834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Knizia, Christian A1 - Kuhne, Maren A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - LC–ELISA as a contribution to the assessment of matrix effects with environmental water samples in an immunoassay for estrone (E1) N2 - Estrone (E1), a metabolite of the estrogenic hormones 17β-estradiol (β-E2) and 17α-estradiol (α-E2), is itself a potent estrogen which can have a significant impact on the hormonal balance. Due to ist high potential for adverse effects on human health and aquatic life even at pg/L to ng/L levels, its appearance in water should be monitored. E1 has also been considered a marker substance for the presence of other estrogens. This study presents a newly developed direct competitive enzymelinked immunosorbent assay (ELISA) for quantification of E1 in environmental water samples using new monoclonal antibodies. The quantification range of the ELISA is 0.15 μg/L to 8.7 μg/L E1, and the limit of detection is around 60 ng/L for not pre-concentrated water samples. A pre-concentration step after careful selection of suitable phases for SPE was developed, too. The influence of organic solvents and natural organic matter on the ELISA was assessed. The high selectivity of the monoclonal antibody was demonstrated by determining the cross-reactivity against 20 structurally related compounds. For the assessment of matrix effects, a concept (“LC–ELISA”) is thoroughly exploited, i.e., separating complex samples by HPLC into 0.3 min fractions and determination of the apparent E1 concentration. Furthermore, fractions with interferences for nontarget/suspected-target analysis can be assigned. A dilution approach was applied to distinguish between specific interferences (cross-reactants) and non-specific interferences (matrix effects). In the determination of 18 environmental samples, a good agreement of the E1 concentration in the respective fractions was obtained with mean recoveries of 103 % to 132 % comparing ELISA to LC–MS/MS. KW - Validierung KW - Immunoassay KW - Matrixeffekte KW - Abwasser KW - Oberflächenwasser KW - ELISA KW - LC-MS/MS KW - Hormone KW - Endokrine Disruptoren PY - 2018 U6 - https://doi.org/10.1007/s00769-018-1351-7 SN - 1432-0517 SN - 0949-1775 VL - 23 IS - 6 SP - 349 EP - 364 PB - Springer CY - Heidelberg AN - OPUS4-46891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -