TY - JOUR A1 - Gopala, Anil A1 - Mahn, S. A1 - Panne, Ulrich A1 - Kipphardt, Heinrich T1 - In situ vacuum thermal mass spectroscopy for the selection of an environmentally friendly, energy saving catalytic additive and optimization of the process by a novel ignition mechanism N2 - We report herein the utilization of vacuum thermal mass spectrometry (VTMS) for the selection of an environmentally friendly, energy saving catalytic additive and a novel ignition mechanism, which is complementary to catalysis for the reduction of zinc oxide with carbon. PY - 2013 U6 - https://doi.org/10.1039/c3ra40223a SN - 2046-2069 VL - 3 IS - 25 SP - 9677 EP - 9680 PB - RSC Publishing CY - London AN - OPUS4-28659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Der Nachweis von Gadolinium - Kontrastmittel in Oberflächengewässern und Pflanzen N2 - Seit Jahren wird eine erhöhte Konzentration des Gadoliniums in der Umwelt beobachtet und dies kann auf seine Anwendung in der Medizin zurückgeführt werden, denn Gadolinium wird seit rund 25 Jahren u. a. in Krankenhäusern als Kontrastmittel für das Magnetresonanzimaging (MRI) angewendet. PY - 2013 SN - 0016-3538 VL - 7 SP - 434 EP - 436 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-28850 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was optimized for speciation analysis of gadolinium-based contrast agents in environmental samples, in particular surface river waters and plants. Surface water samples from the Teltow channel, near Berlin, were investigated over a distance of 5 km downstream from the influx of a wastewater treatment plant. The total concentration of gadolinium increased significantly from 50 to 990 ngL-1 due to the influx of the contrast agents. After complete mixing with the river water, the concentration remained constant over a distance of at least 4 km. Two main substances [Dotarem® (Gd-DOTA) and Gadovist® (Gd-BT-DO3A)] have been identified in the river water using standards. A gadolinium-based contrast agent, possibly Gd-DOTA (Dotarem®), was also detected in water plant samples taken from the Teltow channel. Therefore, uptake of contrast agents [Gadovist® (Gd-BTDO3A), Magnevist® (Gd-DTPA), Omniscan® (Gd-DTPA-BMA), Dotarem® (Gd-DOTA), and Multihance® (Gd-BOPTA)] by plants was investigated in a model experiment using Lepidium sativum (cress plants). HILIC–ICP-MS was used for identification of different contrast agents, and a first approach for quantification using aqueous standard solutions was tested. For speciation analysis, all investigated contrast agents could be extracted from the plant tissues with a recovery of about 54 % for Multihance® (Gd-BOPTA) up to 106 % for Gadovist® (Gd-BT-DO3A). These experiments demonstrate that all contrast agents investigated are transported from the roots to the leaves where the highest content was measured. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Plants KW - Surface water PY - 2013 U6 - https://doi.org/10.1007/s00216-012-6643-x SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 6 SP - 1865 EP - 1873 PB - Springer CY - Berlin AN - OPUS4-27929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Sven A1 - Demidov, Alexandr A1 - Shelby, D. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Smith, B.W. A1 - Omenetto, N. T1 - Diagnostic of laser-induced plasma using Abel inversion and radiation modeling N2 - A method based on matching synthetic and experimental emissivity spectra was applied to spatially resolved measurements of a laser-induced plasma ignited in argon at atmospheric pressure. The experimental emissivity spectra were obtained by Abel inversion of intensity spectra measured from a thin plasma slice perpendicular to the plasma axis. The synthetic spectra were iteratively calculated from an equilibrium model of plasma radiation that included free free, free–bound, and bound–bound transitions. From both the experimental and synthetic emissivity spectra, spatial and temporal distributions of plasma temperature and number densities of plasma species (atoms, ions, and electrons) were obtained and compared. For the best-fit synthetic spectra, the temperature and number densities were read directly from the model; for experimental spectra, these parameters were obtained by traditional Boltzmann plot and Stark broadening methods. In both cases, the same spectroscopic data were used. Two approaches revealed a close agreement in electron number densities, but differences in plasma excitation temperatures and atom number densities. The trueness of the two methods was tested by the direct Abel transform that reconstructed the original intensity spectra for comparing them to the measured spectra. The comparison yielded a 9 and 13% difference between the reconstructed and experimental spectra for the numerical and traditional methods, respectively. It was thus demonstrated that the spectral fit method is capable of providing more accurate plasma diagnostics than the Boltzmann plot and Stark broadening methods. KW - Abel inversion KW - Laser-induced plasma KW - LIBS KW - Plasma spectrum analysis PY - 2013 U6 - https://doi.org/10.1366/12-06929 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 8 SP - 851 EP - 859 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-30433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich T1 - Analytical science of fire T2 - Fire Science Workshop CY - Berlin, Germany DA - 2013-11-29 PY - 2013 AN - OPUS4-30984 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rackwitz, Vanessa A1 - Ostermann, Markus A1 - Panne, Ulrich A1 - Hodoroaba, Vasile-Dan T1 - Performance of mu-XRF with SEM/EDS for trace analysis on the example of RoHS relevant elements - measurement, optimisation and predivtion of the detection limits N2 - For ten years µ-XRF (micro-focus X-ray fluorescence) analysis has been performed with SEM/EDS (scanning electron microscope with an energy dispersive X-ray detector) so that non-destructive analysis of elements at trace level concentrations below 100 µg g-1 becomes possible. This can be considered as a valuable completion of the classical electron probe microanalysis by EDS, an analytical method 'suffering' from rather poor limits of detection in the range of one to two orders of magnitude higher than those of µ-XRF. Based on a representative actual application, namely analysis of RoHS relevant elements at trace concentration levels, the performance of the rather new analytical method with respect to its limits of detection is systematically evaluated. CRMs (certified reference materials) specially prepared to support the quantitative XRF analysis of RoHS relevant elements were employed. On the other side, based on calculations of µ-XRF spectra according to a recently developed physical model the optimization of the analytical performance is also successfully undertaken. KW - RoHS KW - XRF KW - muXRF KW - SEM/EDS KW - Detection limits KW - Trace elements KW - Modelling PY - 2013 U6 - https://doi.org/10.1039/c3ja50064k SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 9 SP - 1466 EP - 1474 PB - Royal Society of Chemistry CY - London AN - OPUS4-29045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Müller, Urs A1 - Malaga, Katarina A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Spatially resolved investigation of complex multi-phase systems using muXRF, SEM-EDX and high resolution SyXRD N2 - Spatially resolved analysis of complex multi-phase systems can be validated through different analytical methods. This study compares investigations by scanning electron microscopy coupled with energy dispersive X-ray fluorescence analysis and high resolution X-ray diffraction. The studied sulfate attacked cement paste containing fly ashes consists of different interacting crystalline and amorphous phases. The complementary methods revealed in detail changes in phase composition due to the chemical attack. The advantages and disadvantages of both methods are discussed and suggestions are given for combining them with additional methods to maximize the information content. KW - EDX-SEM KW - SyXRD KW - Spatial investigations KW - Comparison KW - High resolution KW - Cement paste KW - Sulfate attack KW - Damaging mechanism PY - 2013 U6 - https://doi.org/10.1016/j.cemconcomp.2012.08.018 SN - 0958-9465 SN - 1873-393X VL - 37 SP - 241 EP - 245 PB - Elsevier Ltd. CY - Barking, Essex AN - OPUS4-29111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shelby, D. A1 - Merk, Sven A1 - Smith, B.W. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Omenetto, N. T1 - Temperature evaluation by simultaneous emission and saturated fluorescence measurements: A critical theoretical and experimental appraisal of the approach N2 - Temperature is one of the most important physical parameters of plasmas induced by a focused laser beam on solid targets, and its experimental evaluation has received considerable attention. An intriguing approach, first proposed by Kunze (H.-J. Kunze, Experimental check of local thermodynamic equilibrium in discharges, Appl. Opt., 25 (1986) 13–13.) as a check of the existence of local thermodynamic equilibrium, is based upon the simultaneous measurement of the thermal emission and the optically saturated fluorescence of the same selected atomic transition. The approach, whose appealing feature is that neither the calibration of the set-up nor the spontaneous radiative probability of the transitions is needed, has not yet been applied, to our knowledge, to analytical flames and plasmas. A critical discussion of the basic requirements for the application of the method, its advantages, and its experimental limitations, is therefore presented here. For our study, Ba+ transitions in a plasma formed by focusing a pulsed Nd:YAG laser (1064 nm) on a glass sample containing BaO are selected. At various delay times from the plasma initiation, a pulsed, excimer-pumped dye laser tuned at the center of two Ba transitions (6s ²S1/2 → 6p ²P°3/2; 455.403 nm and 6p ²P°1/2 → 6d ²S1/2; 452.493 nm) is used to enhance the populations of the excited levels (6p ²P°3/2 and 6d ²S1/2) above their thermal values. The measured ratio of the emission and direct line fluorescence signals observed at 614.171 nm (6p ²P°3/2 → 5d ²D5/2) and 489.997 nm (6d ²S1/2 → 6p ²P°3/2) is then related to the excitation temperature of the plasma. Our conclusion is that the approach, despite being indeed attractive and clever, does not seem to be easily applicable to flames and plasmas, in particular to transient and inhomogeneous plasmas such as those induced by lasers on solids. KW - Plasma temperature KW - Optically saturated fluorescence KW - Laser induced plasma KW - Barium ion emission KW - Emission/fluorescence ratio PY - 2013 U6 - https://doi.org/10.1016/j.sab.2013.09.002 SN - 0584-8547 SN - 0038-6987 VL - 89 SP - 50 EP - 59 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shigeta, K. A1 - Koellensperger, G. A1 - Rampler, E. A1 - Traub, Heike A1 - Rottmann, L. A1 - Panne, Ulrich A1 - Okino, A. A1 - Jakubowski, Norbert T1 - Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements N2 - We have applied a micro droplet generator (µDG) for sample introduction of single selenized yeast cells into a sector field ICP-MS, which was operated in a fast scanning mode with sampling rates of up to 10 kHz, to measure single cells time resolved with 100 µs integration time. Selenized yeast cells have been used as a model system for preliminary investigation. The single cells to be measured have been embedded into droplets and it will be shown that the time duration of a single cell event always is about 400 to 500 µs, and thus comparable to the time duration of a droplet without a cell. A fixed droplet generation rate of 50 Hz produced equidistant signals in time of each droplet event and was advantageous to separate contribution from background and blank from the analytical signal. Open vessel digestion and a multielement analysis were performed with washed yeast cells and absolute amounts per single cell were determined for Na (0.91 fg), Mg (9.4 fg), Fe (5.9 fg), Cu (0.54 fg), Zn (1.2 fg) and Se (72 fg). Signal intensities from single cells have been measured for the elements Cu, Zn and Se, and histograms were calculated for about 1000 cell events. The mean elemental sensitivities measured here range from 0.7 counts per ag (Se) to 10 counts per ag (Zn) with RSD's from 49% (Zn) to 69% (Se) for about 1000 cell events. PY - 2013 U6 - https://doi.org/10.1039/c3ja30370e SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 5 SP - 637 EP - 645 PB - Royal Society of Chemistry CY - London AN - OPUS4-29448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shigeta, K. A1 - Traub, Heike A1 - Panne, Ulrich A1 - Okino, A. A1 - Rottmann, L. A1 - Jakubowski, Norbert T1 - Application of a micro-droplet generator for an ICP-sector field mass spectrometer - optimization and analytical characterization N2 - A micro-droplet generator (µDG) sample introduction system was coupled to a sector field ICP-MS instrument to investigate the analytical figures of merit with respect to single cell analysis. The sector field instrument was operated for the first time in a fast scanning mode (E-scan) with the shortest time resolution of 100 µs to measure the single droplet time resolved and using the original detector in a pulse counting mode without modification of the existing electronics. For reduction of the droplet diameter a triple pulse mode of the droplet generator was applied and a droplet diameter down to 23 µm has been achieved for this investigation with a 100% transport efficiency of droplets. Signal duration times of single droplets of less than 500 µs have been measured. Overall detection efficiencies in the range of 10-3 counts per atom have been achieved and absolute limits of detection range between 120 ag for Fe and 1.1 ag for Mg as a mean value from 1000 droplet events. PY - 2013 U6 - https://doi.org/10.1039/c2ja30207a SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 5 SP - 646 EP - 656 PB - Royal Society of Chemistry CY - London AN - OPUS4-29447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -