TY - JOUR A1 - Shelby, D. A1 - Merk, Sven A1 - Smith, B.W. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Omenetto, N. T1 - Temperature evaluation by simultaneous emission and saturated fluorescence measurements: A critical theoretical and experimental appraisal of the approach JF - Spectrochimica acta B N2 - Temperature is one of the most important physical parameters of plasmas induced by a focused laser beam on solid targets, and its experimental evaluation has received considerable attention. An intriguing approach, first proposed by Kunze (H.-J. Kunze, Experimental check of local thermodynamic equilibrium in discharges, Appl. Opt., 25 (1986) 13–13.) as a check of the existence of local thermodynamic equilibrium, is based upon the simultaneous measurement of the thermal emission and the optically saturated fluorescence of the same selected atomic transition. The approach, whose appealing feature is that neither the calibration of the set-up nor the spontaneous radiative probability of the transitions is needed, has not yet been applied, to our knowledge, to analytical flames and plasmas. A critical discussion of the basic requirements for the application of the method, its advantages, and its experimental limitations, is therefore presented here. For our study, Ba+ transitions in a plasma formed by focusing a pulsed Nd:YAG laser (1064 nm) on a glass sample containing BaO are selected. At various delay times from the plasma initiation, a pulsed, excimer-pumped dye laser tuned at the center of two Ba transitions (6s ²S1/2 → 6p ²P°3/2; 455.403 nm and 6p ²P°1/2 → 6d ²S1/2; 452.493 nm) is used to enhance the populations of the excited levels (6p ²P°3/2 and 6d ²S1/2) above their thermal values. The measured ratio of the emission and direct line fluorescence signals observed at 614.171 nm (6p ²P°3/2 → 5d ²D5/2) and 489.997 nm (6d ²S1/2 → 6p ²P°3/2) is then related to the excitation temperature of the plasma. Our conclusion is that the approach, despite being indeed attractive and clever, does not seem to be easily applicable to flames and plasmas, in particular to transient and inhomogeneous plasmas such as those induced by lasers on solids. KW - Plasma temperature KW - Optically saturated fluorescence KW - Laser induced plasma KW - Barium ion emission KW - Emission/fluorescence ratio PY - 2013 DO - https://doi.org/10.1016/j.sab.2013.09.002 SN - 0584-8547 SN - 0038-6987 VL - 89 SP - 50 EP - 59 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Sven A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - Laser-induced plasma tomography by the Radon transform JF - Journal of analytical atomic spectrometry N2 - The Radon transform is tested as a method for reconstruction of the emissivity distribution of asymmetric laser induced plasmas. Two types of experiments were carried out. First, the plasma asymmetry is introduced via focusing the laser by a cylindrical lens to create plasma plumes elongated along the symmetry axis of the lens. Second, an asymmetric power distribution across the laser beam is created by reflecting the latter from a damaged mirror. Various effects on the quality of the plasma emissivity reconstructed by the Radon tomography method are investigated. The understanding of these effects appears to be essential to design a proper experimental setup to study LIBS plasmas by the Radon tomography method. It is demonstrated that the Radon tomography can successfully be used for experimental studies of asymmetric LIBS plasmas. KW - Radon transform KW - Laser induced plasma KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1039/c1ja10187k SN - 0267-9477 SN - 1364-5544 VL - 26 SP - 2483 EP - 2492 PB - Royal Society of Chemistry CY - London AN - OPUS4-24889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Winefordner, J. D. T1 - Linear correlation for identification of materials by laser induced breakdown spectroscopy: Improvement via spectral filtering and masking JF - Spectrochimica acta B N2 - The purpose of this work is to improve the performance of a linear correlation method used for material identification in laser induced breakdown spectroscopy. The improved correlation procedure is proposed based on the selection and use of only essential spectral information and ignoring empty spectral fragments. The method is tested on glass samples of forensic interest. The 100% identification capability of the new method is demonstrated in contrast to the traditional approach where the identification rate falls below 100% for many samples. KW - Correlation analysis KW - Linear correlation KW - Material identification KW - Laser induced plasma KW - LIBS PY - 2009 DO - https://doi.org/10.1016/j.sab.2009.07.038 SN - 0584-8547 SN - 0038-6987 VL - 64 IS - 10 SP - 1040 EP - 1047 PB - Elsevier CY - Amsterdam AN - OPUS4-20621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eschlböck-Fuchs, S. A1 - Demidov, Alexander A1 - Gornushkin, Igor B. A1 - Schmid, Thomas A1 - Rössler, R. A1 - Huber, N. A1 - Panne, Ulrich A1 - Pedarnig, J. D. T1 - Tomography of homogenized laser-induced plasma by Radon transform technique JF - Spectrochimica Acta B N2 - Tomography of a laser-induced plasma in air is performed by inverse Radon transform of angle-resolved plasma images. Plasmas were induced by single laser pulses (SP), double pulses (DP) in collinear geometry, and by a combination of single laser pulses with pulsed arc discharges (SP-AD). Images of plasmas on metallurgical steel slags were taken at delay times suitable for calibration-free laser-induced breakdown spectroscopy (CFLIBS). Delays ranged from few microseconds for SP and DP up to tens of microseconds for SP-AD excitation. The white-light and the spectrally resolved emissivity ε(x,y,z) was reconstructed for the three plasma excitation schemes. The electron number density Ne(x,y,z) and plasma temperature Te(x,y,z) were determined from Mg and Mn emission lines in reconstructed spectra employing the Saha-Boltzmann plot method. The SP plasma revealed strongly inhomogeneous emissivity and plasma temperature. Re-excitation of plasma by a second laser pulse (DP) and by an arc discharge (SP-AD) homogenized the plasma and reduced the spatial variation of ε and Te. The homogenization of a plasma is a promising approach to increase the accuracy of calibration-free LIBS analysis of complex materials. KW - Plasma tomography KW - Laser induced plasma KW - Radon transform technique KW - Laser induced breakdown spectroscopy (LIBS) KW - Steel slag KW - Calibration-free analysis PY - 2016 DO - https://doi.org/10.1016/j.sab.2016.07.007 VL - 123 SP - 59 EP - 67 PB - Elsevier B.V. AN - OPUS4-37452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Kersten, H. A1 - Glaus, Reto A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Characterization of an airborne laser-spark ion source for ambient mass spectrometry JF - Analytical Chemistry N2 - An airborne laser plasma is suggested as an ambient ion source for mass spectrometry. Its fundamental physical properties, such as an excellent spatial and temporal definition, high electron and ion densities and a high effective cross section in maintaining the plasma, make it a promising candidate for future applications. For deeper insights into the plasma properties, the optical plasma emission is examined and compared to mass spectra. The results show a seemingly contradictory behavior, since the emitted light reports the plasma to almost entirely consist of hot elemental ions, while the corresponding mass spectra exhibit the formation of intact molecular species. Further experiments, including time- resolved shadowgraphy, spatially resolved mass spectrometry, as well as flow-dependent emission spectroscopy and mass spectrometry, suggest the analyte molecules to be formed in the cold plasma vicinity upon interaction with reactive species formed inside the hot plasma center. Spatial separation is maintained by concentrically expanding pressure waves, inducing a strong unidirectional diffusion. The accompanying rarefaction inside the plasma center can be compensated by a gas stream application. This replenishing results in a strong increase in emission brightness, in local reactive species concentration, and eventually in direct mass spectrometric sensitivity. To determine the analytical performance of the new technique, a comparison with an atmospheric pressure chemical ionization (APCI) source was conducted. Two kitchen herbs, namely, spearmint and basil, were analyzed without any sample pretreatment. The presented results demonstrate a considerably higher sensitivity of the presented laser-spark ionization technique. KW - Laser-spark KW - Laser induced plasma KW - Ambient mass spectrometry KW - Optical emission spectroscopy KW - Ionization PY - 2017 DO - https://doi.org/10.1021/acs.analchem.6b04178 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 6 SP - 3437 EP - 3444 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-39474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -