TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application N2 - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous materials. Simple and efficient procedures for the preparation of magnetic iron oxalate coated nanoparticles are presented. The catalysts are fully characterized using various investigation techniques. Additionally, the formation of photo-sensitized oxygen by spin-trapping using electron spin resonance is investigated. The catalytic activity of two model substrates (carbamazepine and bisphenol A) is also evaluated. The effect of operational parameters (catalyst and H2O2 concentration, UVA light) on the degradation performance of the oxidation process is investigated. The obtained reaction rates depend on the nature of the compound and increase with iron oxide shell thickness of the catalyst. Moreover, these materials show a significant activity during two consecutive tests. The optimum experimental parameters are found to be 1.0 g L-1 of catalysts, 10 mM H2O2, under UVA irradiation. More than 99% of both substrates are removed after 30 min of reaction time under the experimental conditions given above. The results obtained show that the catalysts are suitable candidates for the removal of pollutants in wastewaters by means of the Fenton heterogeneous reaction. KW - Magnetic core–shell nanocatalysts KW - Characterization KW - Fenton oxidation KW - Micropollutants KW - Water treatment PY - 2015 U6 - https://doi.org/10.1016/j.apcatb.2015.04.050 SN - 0926-3373 SN - 1873-3883 VL - 176-177 SP - 667 EP - 677 PB - Elsevier CY - Amsterdam AN - OPUS4-33820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Sample loss in asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry of silver nanoparticles N2 - In this work, sample losses of silver nanoparticles (Ag NPs) in asymmetrical flow field-flow fractionation (AF4) have been systematically investigated with the main focus on instrumental conditions like focusing and cross-flow parameters as well as sample concentration and buffer composition. Special attention was drawn to the AF4 membrane. For monitoring possible silver depositions on the membrane, imaging laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) was used. Our results show that the sample residue on the membrane was below 0.6% of the total injected amount and therefore could be almost completely avoided at low sample concentrations and optimized conditions. By investigation of the AF4 flows using inductively coupled plasma mass spectrometry (ICP-MS), we found the recovery rate in the detector flow under optimized conditions to be nearly 90%, while the cross-flow, slot-outlet flow and purge flow showed negligible amounts of under 0.5%. The analysis of an aqueous ionic Ag standard solution resulted in recovery rates of over 6% and the ionic Ag content in the sample was found to be nearly 8%. Therefore, we were able to indicate the ionic Ag content as the most important source of sample loss in this study. KW - Asymmetric flow filed-flow fractionation KW - ICP-MS KW - Nanoparticles KW - Sample loss KW - Quantification PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-336171 SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 10 SP - 2214 EP - 2222 PB - Royal Society of Chemistry CY - London AN - OPUS4-33617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Schneider, Rudolf A1 - Hodoroaba, Vasile-Dan A1 - Ababei, G. A1 - Panne, Ulrich T1 - Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts N2 - The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the Degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant undervery mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, thesurface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxideoxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye Degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L−1at 25◦C and initial pH value of 9.0.CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment methodfor complete decolorization of effluents from textile dyeing and finishing processes, once the Optimum operating conditions are established. T2 - 10th International Conference On Physics Of Advanced Materials (ICPAM-10) CY - Iasi, Romania DA - 22.09.2014 KW - Sensitized magnetic nanocatalysts KW - Catalytic wet peroxide oxidation KW - Reactive azo dye degradation PY - 2015 UR - http://www.sciencedirect.com/science/article/pii/S0169433215000483 U6 - https://doi.org/10.1016/j.apsusc.2015.01.036 SN - 0169-4332 VL - 352 SP - 42 EP - 48 PB - Elsevier B.V. AN - OPUS4-38760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jiang, W. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5–12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Internal standard KW - Berlin tap water PY - 2015 U6 - https://doi.org/10.1007/s00216-014-8368-5 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 9 SP - 2415 EP - 2422 PB - Springer CY - Berlin AN - OPUS4-32982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabriel, Stefan A1 - Steinhoff, R.F. A1 - Pabst, M. A1 - Schwarzinger, C. A1 - Zenobi, R. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Improved analysis of ultra-high molecular mass polystyrenes in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using DCTB matrix and caesium salts N2 - Rationale The ionization of polystyrenes in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is typically achieved by the use of silver salts. Since silver salts can cause severe problems, such as cluster formation, fragmentation of polymer chains and end group cleavage, their substitution by alkali salts is highly desirable. Methods The influence of various cations (Ag+, Cs+ and Rb+) on the MALDI process of polystyrene (PS) mixtures and high mass polystyrenes was examined. The sample preparation was kept as straightforward as possible. Consequently, no recrystallization or other cleaning procedures were applied. Results The investigation of a polystyrene mixture showed that higher molecular polystyrenes could be more easily ionized using caesium, rather than rubidium or silver salts. In combination with the use of DCTB as matrix a high-mass polymer analysis could be achieved, which was demonstrated by the detection of a 1.1 MDa PS. Conclusions A fast, simple and robust MALDI sample preparation method for the analysis of ultra-high molecular weight polystyrenes based on the use of DCTB and caesium salts has been presented. The suitability of the presented method has been validated by using different mass spectrometers and detectors. KW - MALDI KW - Mega-dalton KW - Ionization KW - Caesium KW - Polystyrene KW - DCTB PY - 2015 UR - http://onlinelibrary.wiley.com/doi/10.1002/rcm.7197/full U6 - https://doi.org/10.1002/rcm.7197 SN - 0951-4198 SN - 1097-0231 VL - 29 IS - 11 SP - 1039 EP - 1046 PB - Wiley CY - Chichester AN - OPUS4-33191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Börno, Fabian A1 - Richter, Silke A1 - Deiting, D. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Direct multi-elementanalysis of plastic materials via solid sampling electrothermal vaporization inductively coupled plasma optical emission spectroscopy N2 - In this work the determination of Cd, Cu, Cr, Fe and Sb as organic and inorganic additives in in-house plastic materials (ABS, LDPE) using electrothermal vaporization combined with inductively coupled plasma optical emission spectroscopy is described. The influence of CCl2F2 as gaseous halogenation modifier was investigated. Especially for the carbide forming elements the sensitivity was improved and the memory effects were significantly reduced. Calibration was performed by external calibration and standard addition with aqueous standard solutions added directly into the sample boats. Absolute limits of detection (3s-criterion) range between 0.1 ng (Cd) and 9 ng (Fe) which corresponds to relative values of 0.1 mg kg-1 and 1.6 mg kg-1, respectively, taking 5 mg as typical sample mass. The detection limits are sufficient to monitor the element contents of plastic materials according to European directives such as European directive on the safety of toys. The developed ETV-ICP-OES method allows a fast analysis with a high sample throughput (3 minutes per analysis), low sample consumption and good trueness and precision for the analyzed elements. Sample preparation is reduced to ashing the samples in a muffle furnace. Furthermore, measurements are possible regardless of the chemical form in the additives. For verification the results obtained with the developed method were compared with measurement results of independent methods ICP-MS/OES after digestion. In addition Cd, Cr and Pb were determined in a solid plastic reference material BAM-H010 to confirm the applicability and accuracy of the method. PY - 2015 U6 - https://doi.org/10.1039/c4ja00442f SN - 0267-9477 SN - 1364-5544 SP - 1 EP - 8 PB - Royal Society of Chemistry CY - London AN - OPUS4-32581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, M.C. A1 - Stroh, Julia A1 - Malaga, K. A1 - Meng, Birgit A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction N2 - Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism. KW - Portland cement KW - In-situ KW - X-Ray diffraction KW - EDX KW - Durability KW - Chloride attack PY - 2015 U6 - https://doi.org/10.1016/j.solidstatesciences.2015.03.021 SN - 1293-2558 SN - 1873-3085 VL - 44 SP - 45 EP - 54 PB - Elsevier Masson SAS CY - Amsterdam AN - OPUS4-33171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application N2 - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous materials. Simple and efficient procedures for the preparation of magnetic iron oxalate coated nanoparticles are presented. The catalysts are fully characterized using various investigation techniques. Additionally, the formation of photo-sensitized oxygen by spin-trapping using electron spin resonance is investigated. The catalytic activity of two model substrates (carbamazepine and bisphenol A) is also evaluated. The effect of operational parameters (catalyst and H2O2 concentration, UVA light) on the degradation performance of the oxidation process is investigated. The obtained reaction rates depend on the nature of the compound and increase with iron oxide shell thickness of the catalyst. Moreover, these materials show a significant activity during two consecutive tests. The optimum experimental parameters are found to be 1.0 g L−1 of catalysts, 10 mM H2O2, under UVA irradiation. More than 99% of both substrates are removed after 30 min of reaction time under the experimental conditions given above. The results obtained show that the catalysts are suitable candidates for the removal of pollutants in wastewaters by means of the Fenton heterogeneous reaction. KW - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous KW - Characterization KW - Micropollutants PY - 2015 U6 - https://doi.org/10.1016/j.apcatb.2015.04.050 SN - 0926-3373 SN - 1873-3883 VL - 176-177 SP - 667 EP - 677 PB - Elsevier AN - OPUS4-40072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like catalysts for the removal of water pollutants N2 - Two types of surface modified magnetite (Fe3O4) nanoparticles, coated with either tannic acid (TA) or dissolved natural organic matter (NOM), were evaluated as magnetic heterogeneous catalysts. Simple and efficient procedures for the synthesis of the magnetic catalysts were employed, their properties being fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing Bisphenol A (BPA) over the catalysts was comparatively studied. The optimum experimental parameters were: 1g/L of catalysts, 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80% of BPA were removed after 30 minutes of reaction time under the specified experimental conditions. The results showed that the obtained catalysts are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction T2 - TechConnect World Innovation Conference Nanotech 2015 CY - Washington, DC, Maryland, USA DA - 14.06.2015 KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater KW - Bisphenol A degradation PY - 2015 SN - 978-1- 4987-4733-2 SN - 978-1-4987-4728-8 VL - 2 SP - 87 EP - 90 PB - CRC Press, Taylor&Francis Group AN - OPUS4-40074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Riedel, Jens T1 - Characterization of two modes in a dielectric barrier discharge probe by optical emission spectroscopy and time-of-flight-mass spectrometry N2 - Among the large number of new ambient ionization schemes in the last few years, dielectric barrier discharge (DBD) has witnessed special attention. In this contribution a versatile dual mode DBD is introduced and characterized by means of optical emission spectroscopy and time-of-flight mass spectrometry. A direct comparison of the individual results from spectroscopy, spectrometry and transient current/voltage consumption gives evidence for the existence of two individual operational mechanisms. The first is driven by rapid transient changes in the potential difference between the two electrodes over time (usually denoted as the homogeneous mode), while the second is caused at high static potential differences (leading to filamentary discharges). The transient versus steady-state characteristics of the individual discharge origin suggest the driving force for the current flow to be inductive and capacitive, respectively. In most cases of dielectric barrier plasmas both discharge types coexist as competitive ion formation channels, however, detailed plasma characteristics of DBDs operated under different conditions allow for a clear distinction of the individual contributions. In this way, two characteristic product channels for the ionization of ambient water could be observed resulting in the generation of either preferentially protonated water clusters or ammonium water clusters. Careful tuning of the operation parameters of the discharge device allows an operation predominated by either of the two modes. As a consequence, facile switching into the desired operational mode results in either protonated molecules or ammoniated molecules of the analyte. Plasma characteristics for both moieties were evaluated and cross-correlated on the basis of several factors including: the production of reagent ions, the individual appearance of current/voltage profiles, UV/Vis spectroscopy, voltage and flux dependence and the individual response to test compounds. Although the filamentary mode has been already discussed in the literature to induce fragmentation processes, no experimental evidence for analyte dissociation could be found in the case of the test compounds used KW - Dual mode KW - Dielectric barrier discharge KW - Ambient desorption/ionization mass spectrometry KW - Emission spectroscopy KW - Ionization PY - 2015 U6 - https://doi.org/10.1039/C5JA00332F SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 12 SP - 2496 EP - 2506 PB - Royal Society of Chemistry CY - London AN - OPUS4-35092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Warschat, Carsten A1 - Stindt, Arne A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Mass spectrometry of levitated droplets by thermally unconfined infrared-laser desorption N2 - An ionization scheme for fast online mass spectrometric interrogation of levitated droplets is presented. That renewed method comprises the output of an a Er:YAG laser at λ = 2.94 µm which is in resonance with the OH stretch vibration band of solvents like water and alcohols. A temporal pulse width larger than the time needed for pressure redistribution and also above the temperature redistribution time constant was found to lead to soft evaporation/ionization. Despite these mild desorption conditions, no additional postionization is found to be needed. Accordingly, the ionization is found to be very soft resulting in entirely intact analyte ions and concentration dependent cluster ions. Resulting mass spectra of small amino acids and large antibiotics are presented showing the versatility of the introduced technique. Above a critical mass of m ≈ 1 kDa, the formed ions carry multiple charges as it is typical for thermospray or electrospray ionization. The detection technique enables fast contactless analysis of the chemical composition of levitated microreactors and, thus, paves the way for future contactless reaction monitoring. KW - Laser desorption ionization KW - Levitated droplets KW - Ambient mass spectrometry PY - 2015 U6 - https://doi.org/10.1021/acs.analchem.5b01495 SN - 0003-2700 SN - 1520-6882 VL - 87 IS - 16 SP - 8323 EP - 8327 PB - American Chemical Society CY - Washington, DC AN - OPUS4-35134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants N2 - The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the Degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method. KW - Nanocatalysts KW - Photo-Fenton oxidation KW - Wastewater KW - Bisphenol A degradation KW - Environment KW - Mitigation PY - 2015 UR - http://link.springer.com/article/10.1007/s11051-015-3290-0 U6 - https://doi.org/10.1007/s11051-015-3290-0 VL - 17 IS - 12 SP - 476 (1) EP - 476 (10) PB - Springer AN - OPUS4-38758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eschlböck-Fuchs, S. A1 - Huber, N. A1 - Ahamer, C. M. A1 - Hechenberger, J. G. A1 - Kolmhofer, P. J. A1 - Heitz, J. A1 - Rössler, R. A1 - Demidov, Alexander A1 - Schmid, Thomas A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Pedarnig, J. D. T1 - Application of laser-induced breakdown spectroscopy for the analysis of slags in industrial steel production N2 - Laser-induced breakdown spectroscopy (LIBS) is a fast and versatile technique for (semi) quantitative element analysis of solids, liquids, gases, and particulate matter. The LIBS method is used for optical sensing in various branches of industrial production. In the contribution we review some of our recent results on LIBS analysis of slags from secondary metallurgy in industrial steel making. Major oxides in steel slags are measured at-line and after homogenization using a calibration-free (CF) method. Two approaches for CF analysis based on the Boltzmann plot method and on the calculation of synthetic spectra are compared for the analysis of quaternary oxides. We also present the research in cooperation with our industrial partners in the process-analytical chemistry network PAC. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Vienna, Austria DA - 30.11.2015 KW - Laser-induced breakdown spectroscopy (LIBS) KW - Process analytical technology KW - Steel slag PY - 2015 PB - Plandruck+ Gesellschaft m.b.H. CY - Wien AN - OPUS4-39005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich T1 - Analytical Sciences in Action T2 - Institutskolloquium Max-Planck-Institut für Dynamik komplexer technischer Systeme CY - Magdeburg DA - 2015-03-05 PY - 2015 AN - OPUS4-35191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich T1 - Analytical Sciences in Action: The Graduate School SALSA T2 - IRIS 2015 CY - Berlin DA - 2015-07-10 PY - 2015 AN - OPUS4-35192 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Characterization and application of Green Fenton-like catalysts for the removal of water pollutants N2 - Three types of magnetite-chitosan/iron oxalate/iron citrate nanoparticles (NP) were evaluated as magnetic heterogeneous catalysts for water treatment. T2 - PTIM 2015, 1st International Caparica Conference on Pollutant Toxic Ions and Molecules CY - Caparica, Portugal DA - 02.112015 KW - Bisphenol A degradation KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater PY - 2015 SN - 978-989-99361-6-4 SP - 186 EP - 187 PB - Proteomass AN - OPUS4-40082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 U6 - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -