TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Rurack, Knut A1 - Riedel, Jens T1 - Characterization of two modes in a dielectric barrier discharge probe by optical emission spectroscopy and time-of-flight-mass spectrometry JF - Journal of analytical atomic spectrometry N2 - Among the large number of new ambient ionization schemes in the last few years, dielectric barrier discharge (DBD) has witnessed special attention. In this contribution a versatile dual mode DBD is introduced and characterized by means of optical emission spectroscopy and time-of-flight mass spectrometry. A direct comparison of the individual results from spectroscopy, spectrometry and transient current/voltage consumption gives evidence for the existence of two individual operational mechanisms. The first is driven by rapid transient changes in the potential difference between the two electrodes over time (usually denoted as the homogeneous mode), while the second is caused at high static potential differences (leading to filamentary discharges). The transient versus steady-state characteristics of the individual discharge origin suggest the driving force for the current flow to be inductive and capacitive, respectively. In most cases of dielectric barrier plasmas both discharge types coexist as competitive ion formation channels, however, detailed plasma characteristics of DBDs operated under different conditions allow for a clear distinction of the individual contributions. In this way, two characteristic product channels for the ionization of ambient water could be observed resulting in the generation of either preferentially protonated water clusters or ammonium water clusters. Careful tuning of the operation parameters of the discharge device allows an operation predominated by either of the two modes. As a consequence, facile switching into the desired operational mode results in either protonated molecules or ammoniated molecules of the analyte. Plasma characteristics for both moieties were evaluated and cross-correlated on the basis of several factors including: the production of reagent ions, the individual appearance of current/voltage profiles, UV/Vis spectroscopy, voltage and flux dependence and the individual response to test compounds. Although the filamentary mode has been already discussed in the literature to induce fragmentation processes, no experimental evidence for analyte dissociation could be found in the case of the test compounds used KW - Dual mode KW - Dielectric barrier discharge KW - Ambient desorption/ionization mass spectrometry KW - Emission spectroscopy KW - Ionization PY - 2015 DO - https://doi.org/10.1039/C5JA00332F SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 12 SP - 2496 EP - 2506 PB - Royal Society of Chemistry CY - London AN - OPUS4-35092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Warschat, Carsten A1 - Stindt, Arne A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Mass spectrometry of levitated droplets by thermally unconfined infrared-laser desorption JF - Analytical Chemistry N2 - An ionization scheme for fast online mass spectrometric interrogation of levitated droplets is presented. That renewed method comprises the output of an a Er:YAG laser at λ = 2.94 µm which is in resonance with the OH stretch vibration band of solvents like water and alcohols. A temporal pulse width larger than the time needed for pressure redistribution and also above the temperature redistribution time constant was found to lead to soft evaporation/ionization. Despite these mild desorption conditions, no additional postionization is found to be needed. Accordingly, the ionization is found to be very soft resulting in entirely intact analyte ions and concentration dependent cluster ions. Resulting mass spectra of small amino acids and large antibiotics are presented showing the versatility of the introduced technique. Above a critical mass of m ≈ 1 kDa, the formed ions carry multiple charges as it is typical for thermospray or electrospray ionization. The detection technique enables fast contactless analysis of the chemical composition of levitated microreactors and, thus, paves the way for future contactless reaction monitoring. KW - Laser desorption ionization KW - Levitated droplets KW - Ambient mass spectrometry PY - 2015 DO - https://doi.org/10.1021/acs.analchem.5b01495 SN - 0003-2700 SN - 1520-6882 VL - 87 IS - 16 SP - 8323 EP - 8327 PB - American Chemical Society CY - Washington, DC AN - OPUS4-35134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics JF - Rapid communications in mass spectrometry N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 DO - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jiang, W. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry JF - Analytical and bioanalytical chemistry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5–12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Internal standard KW - Berlin tap water PY - 2015 DO - https://doi.org/10.1007/s00216-014-8368-5 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 9 SP - 2415 EP - 2422 PB - Springer CY - Berlin AN - OPUS4-32982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Schneider, Rudolf A1 - Hodoroaba, Vasile-Dan A1 - Ababei, G. A1 - Panne, Ulrich T1 - Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts JF - Applied Surface Science N2 - The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the Degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant undervery mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, thesurface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxideoxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye Degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L−1at 25◦C and initial pH value of 9.0.CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment methodfor complete decolorization of effluents from textile dyeing and finishing processes, once the Optimum operating conditions are established. T2 - 10th International Conference On Physics Of Advanced Materials (ICPAM-10) CY - Iasi, Romania DA - 22.09.2014 KW - Sensitized magnetic nanocatalysts KW - Catalytic wet peroxide oxidation KW - Reactive azo dye degradation PY - 2015 UR - http://www.sciencedirect.com/science/article/pii/S0169433215000483 DO - https://doi.org/10.1016/j.apsusc.2015.01.036 SN - 0169-4332 VL - 352 SP - 42 EP - 48 PB - Elsevier B.V. AN - OPUS4-38760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nadejde, C. A1 - Neamtu, Mariana A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Characterization and application of Green Fenton-like catalysts for the removal of water pollutants T2 - PTIM 2015 Book of Proceedings N2 - Three types of magnetite-chitosan/iron oxalate/iron citrate nanoparticles (NP) were evaluated as magnetic heterogeneous catalysts for water treatment. T2 - PTIM 2015, 1st International Caparica Conference on Pollutant Toxic Ions and Molecules CY - Caparica, Portugal DA - 02.112015 KW - Bisphenol A degradation KW - Nanocatalysts KW - Characterization KW - Fenton oxidation KW - Wastewater PY - 2015 SN - 978-989-99361-6-4 SP - 186 EP - 187 PB - Proteomass AN - OPUS4-40082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gabriel, Stefan A1 - Steinhoff, R.F. A1 - Pabst, M. A1 - Schwarzinger, C. A1 - Zenobi, R. A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Improved analysis of ultra-high molecular mass polystyrenes in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using DCTB matrix and caesium salts JF - Rapid communications in mass spectrometry N2 - Rationale The ionization of polystyrenes in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is typically achieved by the use of silver salts. Since silver salts can cause severe problems, such as cluster formation, fragmentation of polymer chains and end group cleavage, their substitution by alkali salts is highly desirable. Methods The influence of various cations (Ag+, Cs+ and Rb+) on the MALDI process of polystyrene (PS) mixtures and high mass polystyrenes was examined. The sample preparation was kept as straightforward as possible. Consequently, no recrystallization or other cleaning procedures were applied. Results The investigation of a polystyrene mixture showed that higher molecular polystyrenes could be more easily ionized using caesium, rather than rubidium or silver salts. In combination with the use of DCTB as matrix a high-mass polymer analysis could be achieved, which was demonstrated by the detection of a 1.1 MDa PS. Conclusions A fast, simple and robust MALDI sample preparation method for the analysis of ultra-high molecular weight polystyrenes based on the use of DCTB and caesium salts has been presented. The suitability of the presented method has been validated by using different mass spectrometers and detectors. KW - MALDI KW - Mega-dalton KW - Ionization KW - Caesium KW - Polystyrene KW - DCTB PY - 2015 UR - http://onlinelibrary.wiley.com/doi/10.1002/rcm.7197/full DO - https://doi.org/10.1002/rcm.7197 SN - 0951-4198 SN - 1097-0231 VL - 29 IS - 11 SP - 1039 EP - 1046 PB - Wiley CY - Chichester AN - OPUS4-33191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -