TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. ED - Otremba, Frank ED - Romero-Navarrete, José A. T1 - Sloshing in Vertical Circular Tanks and Earthquakes Perturbations N2 - A simplified formulation is proposed in this paper to assess the proximity of the earthquake-related Perturbation frequencies to the natural sloshing frequencies of the liquid contained in vertical cylindrical tanks. The methodology is based upon an existing gravity-waves approach, which was developed for rectangular cross-section reservoirs, and is extended in this paper to analyze circular cross-section tanks. The experimental outputs of this paper show that the existing methodology correlates at 100% with experimental data in the case of rectangular containers; while the corresponding average error in the case of a conical container and a cylindrical container is 7% and 9.1 %, respectively. The full diameter of the cross section was considered. The use of sovalidated methodology to full scale tanks, suggests that cylindrical vertical tanks with a capacity lower than 700 m3, could be exposed to a resonance excitation when subjected to earthquake motions, regardless of the fill level. T2 - WCECS 2019 CY - San Francisco, CA, USA DA - 22.10.2019 KW - Sloshing KW - Tanks KW - Earthquake KW - Perturbation PY - 2019 SP - 1 EP - 6 PB - IA ENG CY - San Francisco AN - OPUS4-49407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Sloshing in vertical circular Tanks and Earthquakes Perturbations N2 - Tanks with capacity larger than 700 m3, could be exposed to a resonance excitation when subjected to earthquake motions, regardless of the fill level. Further studies to assess the dynamic forces linked to such resonance and close-to-resonance situations, in a context of a standard overloading situation due to sloshing forces. T2 - WCECS 2019 CY - San Francisco, CA, USA DA - 22.10.2019 KW - Sloshing KW - Tanks KW - Earthquake KW - Perturbation PY - 2019 AN - OPUS4-49408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kutz, Philipp A1 - Werner, Jan A1 - Otremba, Frank T1 - Testing of Composite Material for Transport Tanks for LNG N2 - To reduce the emission of carbondyoxide (CO2) of combustion engines, liquefied natural gas (LNG) is used as an alternative fuel. LNG is transported via truck, ship or railway for long distances. Double walled stainless steel tanks are used for transportation, which are heavy and expensive. The vacuum insulation between the two walled structure ensures that the LNG stays liquid over the transportation time (boiling point of LNG: -162 ◦C). This causes a high temperature difference between the transported good and the ambient air. A simplified tank construction is used to reduce the weight and price of the tank. Instead of stainless steel, glass fiber reinforced plastic (GFRP) is used. The design is changed to a single walled construction with a solid insulation material outside on the GFRP structure. Goal of this work is the characterization of a suitable insulation material and configuration as well as the analysis of the mechanical properties of GFRP under cryogenic conditions. Several experiments are carried out. Numerical models of these experiments can then be used for parameter studies. KW - GFRP KW - Lightweight design KW - LNG PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/KEM.809.625 SN - 1662-9795 VL - 809 SP - 625 EP - 629 PB - Trans Tech Publications Ltd. AN - OPUS4-48271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero Navaratte, José A. A1 - Otremba, Frank T1 - Scientific Society of Mechanical Engineers N2 - The efficiency and safety of railway transportation depends on many factors and operating conditions, associated to the vehicle, the infrastructure, the operator and the environment. From the vehicle-infrastracture perspective, some influential factors include the dynamics of the vehicle and infrastructure interaction when the vehicle operates on curved tracks. Düring such changes of direction, the vehicle dynamically responds to the lateral perturbation, producing a lateral load transfer that represents an increase of the wheel forces on one side of the track, as a function of the train operating conditions and track design, including track's geometry and over-elevation, and vehicle's operating speed as well as its inertial properties and dimensions. In this context, the lateral load transfer superimposes to tangential steering forces, which are developed when the vehicle enters the curved track, and stabilize once a steady state is attained if the vehicle travels along a constant radius track at constant speed. The magnitude of such tangential forces depends on a variety of factors, including the yaw stiffness of the bogie, and the friction at the centre plate. While the friction at the centre plate generates higher tangential forces on the track and a consequential greater rail wearing and lose of locomotive energy, such friction is also crucial to avoid the hunting phenomenon when the vehicle travels along tangents. In this paper, a mechanically active centre plate is proposed, which increases the friction torque at the centre plate when the vehicle travels along tangents, and reduces such a friction torque when the vehicle negotiates curved portions of the track. Such conceptual design includes the principles of Operation and a needed preliminary experimental model to assess the potential benefits as well as the feasibility of such equipment. T2 - 11th international conference on railway bogies and running gears CY - Budapest, Hungary DA - 09.09.2019 KW - Centre plate KW - Railway KW - Fiction PY - 2019 SP - 28 EP - 30 AN - OPUS4-49004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Soszynska, A. A1 - Säuberlich, T. A1 - Borch, J. A1 - Otremba, Frank A1 - Reulke, R. T1 - Analysis of the gas flare flame with IR cameras N2 - Greenhouse gas emissions caused by human activities remain one of the most important subjects of international discussions. The routine gas flaring has been estimated to be responsible for as much as 1% of global carbon dioxide emission per year. Gas flaring analysis is one of the key-interest subjects in remote sensing community. Some of the existing publications use remote sensing techniques with satellite imagery to derive information about flame temperature and further about to estimate the volume of the flared gas. The often missing element is an in-situ measurement analysis of gas flames, combining signals recorded by a camera on-ground and data on flared gas volume, temperature and gas type. In order to address this problem, an experiment was conducted, in which the gas flame was recorded by thermal cameras on-ground, simultaneously to an aerial survey and the gas flow was measured at the same time on-ground. The measurement setup was designed in cooperation between Institute of Optical Sensor Systems of German Aerospace Center (DLR) and German Federal Institute for Materials Research and Testing (BAM). Cameras recording in thermal and mid-wave IR wavelengths were used to record the burning gas on-ground and from the aerial survey. All the measurements have been compared and statistically analysed with respect to the recorded temperature. The purpose of the examination was to describe the signal changes in thermal imagery with respect to changes in energy, emitted by the burning process. This approach will allow for later calculation of the amount of energy in form of thermal radiation sent from the flame to the satellite. T2 - Processing Methodologies I CY - Strasbourg, France DA - 10.09.2019 KW - Gas flaring KW - Thermal remote sensing KW - Thermal radiation KW - Aerial survey PY - 2019 DO - https://doi.org/10.1117/12.2532887 SP - Paper 11156-5, 1 EP - 19 AN - OPUS4-48997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian A1 - Balke, Christian A1 - Otremba, Frank T1 - Fire protection systems for above-ground storage tanks N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, Niederlande DA - 16.06.2019 KW - Fire KW - Protection systems KW - Propane storage tanks PY - 2019 SN - 978-88-95608-72-3 VL - 75 SP - 1 EP - 6 AN - OPUS4-49021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank ED - Romero-Navarrete, José A. ED - Otremba, Frank T1 - A computational scheme for assessing driving N2 - The systematization of the analysis, based on the Software proposed in this paper, could contribute to integrally improve the sustainability of the Transportation. KW - Computational scheme KW - Assessing KW - Driving PY - 2019 SN - 978-3-030-22870-5 SN - 978-3-030-22871-2 DO - https://doi.org/10.1007/978-3-030-22871-2 SN - 2194-5357 VL - 1 SP - 44 EP - 58 PB - Springer CY - Switzerland AN - OPUS4-48585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Oblique testing of a partially filled tank on a tilt table N2 - Braking-in-a-turn maneuvers represent a critical operational condition for any vehicle, due to the associated longitudinal and lateral perturbations to which it is subjected, which maximize the load transfer among the different wheels, and result in vehicle´s poor lateral stability and deficient braking performance. In this paper, a suspended vehicle supporting a partially filled 10 litter-capacity container, is set on a tilt table at oblique angles, in order to simulate a braking-in-a-turn maneuver. The measurements are assessed in the time and frequency domains, on the basis of the lateral load transfer ratio and the infrastructure fatigue damage. The outputs from the experiment show that the Minimum fill level (one-quarter), generates the larger lateral load transfer (0.45). Such fill level also causes the greatest ratios for the alternate stress over the mean stress on the infrastructure. The spectral analysis reveals the dominance of one of the sloshing frequencies during such combined perturbation condition. T2 - IFToMM world congress CY - Krakow, Poland DA - 30.06.2019 KW - Sloshing KW - Lateral stability KW - Load transfer KW - Braking-in-a-turn maneuvers KW - Infrastructure damage KW - Experimental approach PY - 2019 SN - 978-3-030-20130-2 SN - 978-3-030-20131-9 DO - https://doi.org/10.1007/978-3-030-20131-9_359 SN - 2211-0984 VL - 73 SP - 3641 EP - 3650 PB - Springer Nature Switzerland AG 2019 AN - OPUS4-48454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Lateral load transfer due to sloshing cargo in partially filled containers N2 - A testing methodology has been proposed in this paper, to compare the load transfer derived from solid and liquid cargoes when the carrying vehicle is subjected to a lateral acceleration in a tilt table. Besides the type of cargo, the other factors (a) One-quarter fill level (b) One-half fill level (c) Three-quarter fill level (d) Fast input considered are the fill level and the rate at which the considered are the fill level and the rate at which the acceleration input is acceleration input is exerted on the vehicleexerted on the vehicle. The acceleration The acceleration input can represent the entering of the carrying vehicle into a input can represent the entering of the carrying vehicle into a curved portion curved portion of of aa road. The testing device integrates the needed components to measure the fourmeasure the four--wheel loads of the wheel loads of the carrying vehicle, while carrying vehicle, while providing different times to attain providing different times to attain aa 10°10° angle angle for the tilt table. for the tilt table. The performance measure selected is significant to assess the rollover trend of a vehicle, on the basis of the wheel loads at both sides of the vehicle. both sides of the vehicle. The outputs from the experiments suggest that the sloshing suggest that the sloshing cargo transfercargo transferss the greater loads, the greater loads, regardless of the fill level and regardless of the fill level and acceleration rate inputacceleration rate input, as a result , as a result of the shifting of the center of of the shifting of the center of gravitygravity of the liquidof the liquid, and of of the the dynamic vibration at the end of dynamic vibration at the end of the perturbation input. In this respect, while the solid cargo the perturbation input. In this respect, while the solid cargo exhibits an initial peak and decay, the exhibits an initial peak and decay, the sloshing cargo exhibits sloshing cargo exhibits several oscillations of the saseveral oscillations of the same magnitude, which is attributed me magnitude, which is attributed to the to the liquid inertia and liquid inertia and to the to the reflection of the surface waves. reflection of the surface waves. A further analysis could supplement this research, to assess supplement this research, to assess the effect of some other factors on the dynamic the effect of some other factors on the dynamic behavior of the behavior of the liquid cargoliquid cargo-vehicle system. Fvehicle system. For example, to analyze the effect or example, to analyze the effect of longitudinal baffles, and to validate theoretical models.of longitudinal baffles, and to validate theoretical models. T2 - IMECE – International Mechanical Engineering Congress and Exposition CY - Salt Lake City, UT, USA DA - 11.11.2019 KW - Transfer KW - Sloshing KW - Cargo KW - Container PY - 2019 SP - 2019-10030 PB - ASME AN - OPUS4-49980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - A real-time GPS scheme to assess safe driving skills N2 - Avoiding road crashes has been the purpose behind many specialized software and hardware systems, involving both active and passive safety principles. Global Positioning technologies were incorporated into the transportation systems with the main purpose of acquiring the position of the vehicle under a continuous basis, for security and economy purposes. However, the GPS data can also be used for assessing the level of safety at which the vehicle is driven. On the basis of the essential data available from commercial GPS devices, in this paper we propose a combined performance measurement to assess the road safety level at which the vehicle is being driven. Such performance measure uses GPS data of the vehicle displacement, including the speed and the acceleration, as well as the course (latitude and longitude coordinates), in an integral driving assessment formulation that can run in real time. Results from the experimental use of this formulation suggest that the level of safety in the driving is time dependent, and that there are risky situations when different factors converge. T2 - ICASAT – 2019 – IEEE international Conference on Applied Science and Advanced Technology CY - Queretaro, México DA - 27.11.2019 KW - GPS Scheme KW - Safe KW - Driving PY - 2019 AN - OPUS4-49982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -