TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Betanzo Quezada, E. A1 - Obregón Biosca, S. A. T1 - The railway transport sustainability in Mexico. Europe and Mexico perspective N2 - The use of railway transportation for satisfying the transport needs of goods in Mexico is less intense than in developed countries, such as Germany. Mexican performance measures based upon the railway length per capita (intensity), or the railway length per square km of the country surface (density), are well behind from corresponding indicators for Germany, in such a way that the length of the railway infrastructure of Mexico should be, at least, doubled in order to reach a comparable intensity rate as that of Germany. In this paper, the benefits from transferring the whole transportation of goods from road to railway, is discussed. The benefits include a remarkable reduction in energy consumption and CO2 emissions. The feasibility for the electrical infrastructure to provide the necessary energy is further shown, while the economic feasibility of such situation is analyzed on the basis of the federal budget of Mexico. According to these estimations, the investment in railway infrastructure is feasible, while the electrical installed capacity is enough to satisfy an all-electric system. T2 - XIV Congreso Internacional de Ingenieria (XIV International Engineering Congress) CY - Querétaro, Mexico DA - 14.05.2018 KW - Railways KW - Trucking KW - Transport externalities KW - Comparative assessment KW - Energy saving potentials PY - 2018 SN - 978-1-5386-7018-7 SP - 1 EP - 4 PB - IEEE AN - OPUS4-45823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Jan A1 - Kutz, P. W. A1 - Otremba, Frank T1 - Testing of Small Scale Tank Prototypes under Cryogenic Conditions T2 - 4Th international conference on energy supply and energy efficiency in Baku Azerbaijan and 5 years neseff N2 - Climate change, CO2 reduction, resource efficiency are only 3 current keywords that describe the current industrial-economic situation. In order to influence climate change effectively, the conversion of supply systems with technically usable forms of energy must succeed in the next decade. The international network founded in Baku in 2015 bundles research activities in the broad field of energy supply and energy efficiency. Discuss current research approaches and results with scientists and experts from renowned universities and follow Azerbaijan's efforts to implement the energy revolution. T2 - Neseff 2020 CY - Online meeting DA - 28.09.2020 KW - Mud pumps KW - Mud circulation system KW - Pistons KW - Hydrostatic pressure KW - Friction wear KW - Ceramic liners KW - Tribology PY - 2020 SN - 978-3-940471-59-8 SP - 4 EP - 9 AN - OPUS4-52149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kutz, Philipp A1 - Werner, Jan A1 - Otremba, Frank T1 - Testing of Composite Material for Transport Tanks for LNG JF - Key Engineering Materials N2 - To reduce the emission of carbondyoxide (CO2) of combustion engines, liquefied natural gas (LNG) is used as an alternative fuel. LNG is transported via truck, ship or railway for long distances. Double walled stainless steel tanks are used for transportation, which are heavy and expensive. The vacuum insulation between the two walled structure ensures that the LNG stays liquid over the transportation time (boiling point of LNG: -162 ◦C). This causes a high temperature difference between the transported good and the ambient air. A simplified tank construction is used to reduce the weight and price of the tank. Instead of stainless steel, glass fiber reinforced plastic (GFRP) is used. The design is changed to a single walled construction with a solid insulation material outside on the GFRP structure. Goal of this work is the characterization of a suitable insulation material and configuration as well as the analysis of the mechanical properties of GFRP under cryogenic conditions. Several experiments are carried out. Numerical models of these experiments can then be used for parameter studies. KW - GFRP KW - Lightweight design KW - LNG PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/KEM.809.625 SN - 1662-9795 VL - 809 SP - 625 EP - 629 PB - Trans Tech Publications Ltd. AN - OPUS4-48271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio T1 - Systems with Cryogenic Liquefied Gases in Fire Incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High- Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 AN - OPUS4-58769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. ED - Otremba, Frank ED - Romero-Navarrete, José A. T1 - Sloshing in Vertical Circular Tanks and Earthquakes Perturbations T2 - The World Congress on Engineering and Computer Science N2 - A simplified formulation is proposed in this paper to assess the proximity of the earthquake-related Perturbation frequencies to the natural sloshing frequencies of the liquid contained in vertical cylindrical tanks. The methodology is based upon an existing gravity-waves approach, which was developed for rectangular cross-section reservoirs, and is extended in this paper to analyze circular cross-section tanks. The experimental outputs of this paper show that the existing methodology correlates at 100% with experimental data in the case of rectangular containers; while the corresponding average error in the case of a conical container and a cylindrical container is 7% and 9.1 %, respectively. The full diameter of the cross section was considered. The use of sovalidated methodology to full scale tanks, suggests that cylindrical vertical tanks with a capacity lower than 700 m3, could be exposed to a resonance excitation when subjected to earthquake motions, regardless of the fill level. T2 - WCECS 2019 CY - San Francisco, CA, USA DA - 22.10.2019 KW - Sloshing KW - Tanks KW - Earthquake KW - Perturbation PY - 2019 SP - 1 EP - 6 PB - IA ENG CY - San Francisco AN - OPUS4-49407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Sloshing in vertical circular Tanks and Earthquakes Perturbations N2 - Tanks with capacity larger than 700 m3, could be exposed to a resonance excitation when subjected to earthquake motions, regardless of the fill level. Further studies to assess the dynamic forces linked to such resonance and close-to-resonance situations, in a context of a standard overloading situation due to sloshing forces. T2 - WCECS 2019 CY - San Francisco, CA, USA DA - 22.10.2019 KW - Sloshing KW - Tanks KW - Earthquake KW - Perturbation PY - 2019 AN - OPUS4-49408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Simulation of liquid cargo – vehicle interaction under lateral and longitudinal accelerations T2 - The 9th International Conference on Computational Methods N2 - Amongst the vehicle parameters influencing road safety, the carried cargo plays a critical role in the case of a liquid cargo, posing rollover risk and affecting the available friction forces for braking. While the lateral sloshing of the cargo within the vehicle´s compartments, can be excited when the vehicle negotiates a turn, the longitudinal motion of the cargo derives from changes of speed. The combination of both types of perturbations occurs when the vehicle brakes while negotiating a turn. In this paper, a two-pendulum formulation is used to simulate the lateral and longitudinal behavior of a vehicle when negotiating a braking in a turn maneuver. The suspension forces are thus calculated as the linear superposition of both models. Results suggest that the vehicle roll stability is affected by the cargo sloshing, with increments on the order of 100% in the lateral load transfer, for a 50% filled tank. On the other hand, the dispersion of the travelling speed also affects the lateral stability of such type of vehicles, as a function of the dispersion of the vehicle´s travelling speed. T2 - The 9th International Conference on Computational Methods (ICCM2018) CY - Rome, Italy DA - 06.08.2018 KW - Sloshing cargo KW - Road tankers KW - Pendulum analogy KW - Braking in a turn KW - Lateral load transfer ratio PY - 2018 SP - 88 EP - 102 PB - Scientech Publisher LLC AN - OPUS4-45821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero Navaratte, José A. A1 - Otremba, Frank T1 - Scientific Society of Mechanical Engineers N2 - The efficiency and safety of railway transportation depends on many factors and operating conditions, associated to the vehicle, the infrastructure, the operator and the environment. From the vehicle-infrastracture perspective, some influential factors include the dynamics of the vehicle and infrastructure interaction when the vehicle operates on curved tracks. Düring such changes of direction, the vehicle dynamically responds to the lateral perturbation, producing a lateral load transfer that represents an increase of the wheel forces on one side of the track, as a function of the train operating conditions and track design, including track's geometry and over-elevation, and vehicle's operating speed as well as its inertial properties and dimensions. In this context, the lateral load transfer superimposes to tangential steering forces, which are developed when the vehicle enters the curved track, and stabilize once a steady state is attained if the vehicle travels along a constant radius track at constant speed. The magnitude of such tangential forces depends on a variety of factors, including the yaw stiffness of the bogie, and the friction at the centre plate. While the friction at the centre plate generates higher tangential forces on the track and a consequential greater rail wearing and lose of locomotive energy, such friction is also crucial to avoid the hunting phenomenon when the vehicle travels along tangents. In this paper, a mechanically active centre plate is proposed, which increases the friction torque at the centre plate when the vehicle travels along tangents, and reduces such a friction torque when the vehicle negotiates curved portions of the track. Such conceptual design includes the principles of Operation and a needed preliminary experimental model to assess the potential benefits as well as the feasibility of such equipment. T2 - 11th international conference on railway bogies and running gears CY - Budapest, Hungary DA - 09.09.2019 KW - Centre plate KW - Railway KW - Fiction PY - 2019 SP - 28 EP - 30 AN - OPUS4-49004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Sklorz, Christian A1 - Martínez Madrid, M. T1 - Quasistatic rollover threshold of atmospheric road tankers T2 - CONiiN XVI International Engineering Congress N2 - Several geometrical analytical tools can be used for assessing the potential benefits of any alternative tank shape. The quasistatic evaluation of the cargo-vehicle behavior represents a fast way to objectively determine the roll stability benefits of any potentially new tank shape. In this paper, the geometrical, quasistatic rollover performance of a convex bottom tank shape is compared with that of standard tank shapes, finding that in spite of the lower position of the cargo´s center of gravity in such a tank shape for the un-perturbed condition, it has the same performance as the elliptical tank shape when subjected to Steady lateral acceleration. That as a result of the large cargo´s lateral displacement. Consequently, the combination of a lower center of gravity for the cargo when it is not perturbed, and a Minimum lateral shift due to lateral accelerations inputs, define the conditions for an ideal tank shape. T2 - CONIIN 2020 CY - Online meeting DA - 28.09.2020 KW - Tank shape KW - Road tankers KW - Center of gravity shifting KW - Quasistatic KW - Convex bottom KW - Geometrical analysis PY - 2020 SP - 1 EP - 6 AN - OPUS4-51388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Qualitätssicherung anstatt Wasserdruckprüfung? N2 - Wasserdruckprüfung kann entfallen: Schutzziel definieren, Qualitätssichernde Maßnahmen während der Herstellung, Nachweise der vorhandenen Qualität muss stetig erfolgen mittels: Betriebsüberwachung, zfP Bewertung des Standes der Technik: Zustandsorientierte Instandhaltung/Inspektion, Reduzierung von Ausfallzeiten durch optimierten Betrieb T2 - CSE-Sicherheitstage CY - Wangerooge, Germany DA - 22.04.2018 KW - Qualitätssicherung KW - Wasserdruckprüfung PY - 2018 AN - OPUS4-44817 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -