TY - CONF A1 - Fraňa, K. A1 - Attia, S. H. A1 - Otremba, Frank T1 - Numerical simulation of the filling process in the pressure bottle N2 - Parameter study for CFD in the bottle – grid resolution plays an important role on the temperature at the specific positions, 2D axi-symetrical calculation is a sufficient solution strategy in regards to the examined particular Problem. The intensity of filling process can be controlled by pressure “User defined function” provided by experiments. Numerical simulation demonstrated feasibility to predict temperature progress during the filling process successfully validated by experiments. The turbulent model k-w SST is the best strategy for the turbulent property calculations. The most intensive turbulent kinetic energy appeared in the middle region of the pressure bottle, the impact of the eddy viscosity on the wall was mostly in the wall region. T2 - ECMMM 2018 CY - Krakow, Poland DA - 10.02.2018 KW - Numerical simulation KW - Pressure bottle PY - 2018 AN - OPUS4-44177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Obregón Biosca, S. A. ED - Romero-Navarrete, José A. T1 - Effective assessment and management of railway infrastructure for competitiveness and sustainability N2 - In this chapter the challenges facing railways have been illustrated through the description of two important events occurring in different geographical areas. While the explosion in Quebec, Canada, points out the importance of taking away the transportation infrastructure from highly populated areas; the disruption of the European railway network in Rastatt, Germany, describes the importance of designing alternative routes to critical railway segments, together with the need to have contingency plans to face extraordinary situations regarding the connectivity in a given transport network. Future research efforts are recognized in relation with the railway car – track interaction, as the dynamic loads derived from such interaction could be reducing the life of such infrastructure. It is particularly important for infrastructures dedicated to the transportation of liquid hazardous substances. KW - Railway KW - Infrastructure PY - 2018 SN - 978-1-53614-059-0 SP - Chapter 5, 1 EP - 23 PB - Nova Science Publishers, 2018 AN - OPUS4-45150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A testing facility to assess railway car infrastructure damage N2 - Wheel forces generate stresses in the rail as a function of several vehicle and infrastructure characteristics and operating conditions. The different components of the wheel forces develop strains in the rail which contain an elastic and hysteretic (irreversible) components. The irreversible deformations of the rail would be associated with locomotive energy losses. In this paper, a testing facility is proposed to indirectly characterize the level of stresses in the rail, in terms of the energy that is lost during tuming maneuvers. Different potentially influential factors are considered, including the friction at the Center plate, the wheelbase length, the distance between bogies and the radius of the curved track. The change in the potential energy during a U-turn displacement is measured. In this respect, an experimental model under this operating principle, aimed at validating such a principle of Operation, reveals a significant effect of the friction at the center plate on the energy lost during turning maneuvers, and consequently, on the level of stresses in the rail. T2 - COMPRAIL 2020 - 17th International Conference on Railway Engineering Design & Operation 2020 CY - Online meeting DA - 01.07.2020 KW - Energy losses in transportation KW - Experimental methods KW - Friction energy KW - Rail damage KW - Turning forces KW - Wheel forces PY - 2020 DO - https://doi.org/10.2495/TDI-V4-N2-142-151 SN - 2058-8305 VL - 4 IS - 2 SP - 142 EP - 151 PB - WitPress AN - OPUS4-51125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bradley, Ian A1 - Otremba, Frank A1 - Scarponi, G. E. A1 - Romero-Navarrete, José A. ED - Ao, S.-I. ED - Kim, H. K. ED - Amouzegar, M. A. T1 - Boiling and thermohydraulics within pressure vessels N2 - Exposure of pressure vessels to fire can result in catastrophic explosion and escalation of accidents. The safe transportation of cargo in pressure vessels therefore requires knowledge of what will happen to the cargo in the event of a vehicle derailment or rollover resulting in fire exposure. The chapter presents an overview of selected testing and modelling work undertaken to understand the thermohydraulic processes within a vessel that drive pressurization during fire. A series of experiments highlighting the importance of adequate design and selection of protection systems are summarized. It is concluded that pressure relief alone is typically insufficient to prevent vessel rupture, but the combination of relief and thermal coatings can be effective. KW - BLEVE KW - Explosion KW - LPG KW - PIV KW - Pressure vessel KW - Thermohydraulics PY - 2020 SN - 978-981-15-6847-3 SN - 978-981-15-6848-0 DO - https://doi.org/https://doi.org/10.1007/978-981-15-6848-0_13 SP - 158 EP - 172 PB - Springer Nature CY - Singapore AN - OPUS4-51138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A method to assess the gravity response efficiency of a truck N2 - In spite that transport activities do not represent the biggest contributor of pollutants emissions, their reduction has been a priority as some other externalities are associated to such emissions and to the transport itself. A crucial element to characterize the behavior of the vehicles against the environment are the losses that such vehicles exhibit in a passive way, that is, without any involvement of power conditions. The energy loses due to the rolling, the drag and to the friction in mechanical components, have been assessed so far in terms of the stopping acceleration when the vehicle idles on a ramp. However, such a testing procedure produces some uncertainties due to the dynamic conditions that are considered. To avoid such critical limitations, in this paper a testing procedure and facility are proposed, which are based on static conditions of the vehicle at the initiation and at the ending of the test, which are assumed to provide a better reliability to the testing. Some preliminary theoretical analysis should be made in order to validate the operational principles proposed herein for such testing facility. KW - Road tankers KW - Energy efficiency KW - Environmental assessment KW - Gravity response KW - Transportation energy KW - Rolling resistance KW - Drag resistance PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511530 UR - https://www.iaras.org/iaras/home/caijes/a-method-to-assess-the-gravity-response-efficiency-of-a-truck SN - 2367-8941 VL - 5 SP - 213 EP - 219 PB - IARAS CY - Sofia AN - OPUS4-51153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzman, A. A. T1 - Estimation of the effect of the driving style on pollutants emission by heavy trucks N2 - Different approaches have been attempted so far to reduce fuel consumption and linked pollutants, including vehicle equipment and design, with rational driving style being recognized as a potential source of fuel savings. However, no specific methodology had been suggested so far to assess fuel economy of driving other than the fuel consumed itself. In this paper, the Standard deviation of driving acceleration has been found to be directly associated to fuel consumption, so that the less dispersion of the driving acceleration, produces the lower fuel consumptions and emissions. Such metric could be thus used to assess driving style. KW - Driving style KW - Fuel consumption KW - Stored energy KW - GPS data KW - Simulation KW - Particle emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511540 UR - https://www.iaras.org/iaras/home/caijes/estimation-of-the-effect-of-the-driving-style-on-pollutants-emission-by-heavy-trucks SN - 2367-8941 VL - 5 SP - 220 EP - 226 PB - IARAS CY - Sofia AN - OPUS4-51154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Experimental methods for road tankers. A critical review N2 - The transportation of liquids involves several situations derived from the curved shape of the cargo containers, including a comparatively high center of gravity, which negatively shifts when the container is partially loaded, and the vehicle is subjected to steering or braking accelerations. Aiming at reducing these effects several experimental approaches have been applied, involving different tank shapes and the use of baffles, tested under laboratory or field conditions, at full scale or at a down-scale. However, the scope of such approaches has been limited, mainly because the potential effect of other components of the vehicle on the road tanker behavior, has been neglected. In this paper, a critical review is presented of the experimental approaches considered so far, identifying specific experimental needs to improve the performance of the vehicles, from both the road safety and the environmental perspective. T2 - IMECE 2020 CY - Online meeting DA - 16.11.2020 KW - Tank KW - Road KW - Methods PY - 2020 SP - 1 EP - 8 AN - OPUS4-51641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - An energy frame of reference to assess vehicle´s physical externalities N2 - Externalities of the road transportation are multidimensional in nature and involve the road-vehicle interaction under different environmental conditions. Estimating the pavement and vehicle damage potentials as a function of the condition sunder which such interaction takes place, is important to avoid accelerated or catastrophic damages in these systems. Such an assessing is crucial from the perspective of pricing the effects of the vehicle on the infrastructure and vice versa. The existing models for pricing such interaction, critically depends on gross average statistical models. In this paper, it is proposed a deterministic approach to realize such an assessment, based upon validated approaches for the pavement damage. The simulation scheme considers different degrees-of-freedom vehicle models, and a discrete asphalt pavement, that make possible the simulation of massive traffic situations on realistic road lengths. T2 - IMECE 2020 CY - Online meeting DA - 16.11.2020 KW - Energy KW - Frame KW - Assess KW - Vehicles PY - 2020 SP - 1 EP - 9 AN - OPUS4-51645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Simulation of liquid cargo – vehicle interaction under lateral and longitudinal accelerations N2 - Amongst the vehicle parameters influencing road safety, the carried cargo plays a critical role in the case of a liquid cargo, posing rollover risk and affecting the available friction forces for braking. While the lateral sloshing of the cargo within the vehicle´s compartments, can be excited when the vehicle negotiates a turn, the longitudinal motion of the cargo derives from changes of speed. The combination of both types of perturbations occurs when the vehicle brakes while negotiating a turn. In this paper, a two-pendulum formulation is used to simulate the lateral and longitudinal behavior of a vehicle when negotiating a braking in a turn maneuver. The suspension forces are thus calculated as the linear superposition of both models. Results suggest that the vehicle roll stability is affected by the cargo sloshing, with increments on the order of 100% in the lateral load transfer, for a 50% filled tank. On the other hand, the dispersion of the travelling speed also affects the lateral stability of such type of vehicles, as a function of the dispersion of the vehicle´s travelling speed. T2 - The 9th International Conference on Computational Methods (ICCM2018) CY - Rome, Italy DA - 06.08.2018 KW - Sloshing cargo KW - Road tankers KW - Pendulum analogy KW - Braking in a turn KW - Lateral load transfer ratio PY - 2018 SP - 88 EP - 102 PB - Scientech Publisher LLC AN - OPUS4-45821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Betanzo Quezada, E. A1 - Obregón Biosca, S. A. T1 - The railway transport sustainability in Mexico. Europe and Mexico perspective N2 - The use of railway transportation for satisfying the transport needs of goods in Mexico is less intense than in developed countries, such as Germany. Mexican performance measures based upon the railway length per capita (intensity), or the railway length per square km of the country surface (density), are well behind from corresponding indicators for Germany, in such a way that the length of the railway infrastructure of Mexico should be, at least, doubled in order to reach a comparable intensity rate as that of Germany. In this paper, the benefits from transferring the whole transportation of goods from road to railway, is discussed. The benefits include a remarkable reduction in energy consumption and CO2 emissions. The feasibility for the electrical infrastructure to provide the necessary energy is further shown, while the economic feasibility of such situation is analyzed on the basis of the federal budget of Mexico. According to these estimations, the investment in railway infrastructure is feasible, while the electrical installed capacity is enough to satisfy an all-electric system. T2 - XIV Congreso Internacional de Ingenieria (XIV International Engineering Congress) CY - Querétaro, Mexico DA - 14.05.2018 KW - Railways KW - Trucking KW - Transport externalities KW - Comparative assessment KW - Energy saving potentials PY - 2018 SN - 978-1-5386-7018-7 SP - 1 EP - 4 PB - IEEE AN - OPUS4-45823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -