TY - CHAP A1 - Jauregui-Correa, J. C. A1 - Otremba, Frank A1 - Romero-Navarrete, José A. A1 - Hurtado-Hurtado, G. ED - Pucheta, M. ED - Cardona, A. ED - Preidikman, S. ED - Hecker, R. T1 - Determination of the Effect of Sloshing on the Railcar-Track Dynamic Behavior N2 - This paper presents the study of the impact caused by a liquid Cargo on a railway infrastructure. The dynamic behavior of a tank car corresponds to a multibody dynamic system with several degrees of freedom. This study’s data were obtained from a scale experimental fixture consisting of a track and a railcar with a tank. The track was instrumented with strain gauges and the railcar with accelerometers. The data showed non-periodic and periodic terms; therefore, the results were analyzed with the Empirical Mode Decomposition method (EMD). It was found that the EMD identified the signal components that were related to the sloshing. These components represent the mode shapes of the original signal. The location of the sloshing in the track was found applying spectrograms to the accelerometer data. This paper’s experimental outputs suggest that the sloshing effect is detectable at the track and in the vehicle dynamics. KW - Sloshing effect KW - Empirical Mode Decomposition KW - Wheel/track interaction KW - Multibody dynamics PY - 2021 SN - 978-3-030-88750-6 U6 - https://doi.org/10.1007/978-3-030-88751-3_14 SP - 131 EP - 140 PB - Springer Nature Switzerland AG AN - OPUS4-53561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Obregón Biosca, S. A. ED - Romero-Navarrete, José A. T1 - Effective assessment and management of railway infrastructure for competitiveness and sustainability N2 - In this chapter the challenges facing railways have been illustrated through the description of two important events occurring in different geographical areas. While the explosion in Quebec, Canada, points out the importance of taking away the transportation infrastructure from highly populated areas; the disruption of the European railway network in Rastatt, Germany, describes the importance of designing alternative routes to critical railway segments, together with the need to have contingency plans to face extraordinary situations regarding the connectivity in a given transport network. Future research efforts are recognized in relation with the railway car – track interaction, as the dynamic loads derived from such interaction could be reducing the life of such infrastructure. It is particularly important for infrastructures dedicated to the transportation of liquid hazardous substances. KW - Railway KW - Infrastructure PY - 2018 SN - 978-1-53614-059-0 SP - Chapter 5, 1 EP - 23 PB - Nova Science Publishers, 2018 AN - OPUS4-45150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank ED - Romero-Navarrete, José A. ED - Otremba, Frank T1 - A computational scheme for assessing driving N2 - The systematization of the analysis, based on the Software proposed in this paper, could contribute to integrally improve the sustainability of the Transportation. KW - Computational scheme KW - Assessing KW - Driving PY - 2019 SN - 978-3-030-22870-5 SN - 978-3-030-22871-2 U6 - https://doi.org/10.1007/978-3-030-22871-2 SN - 2194-5357 VL - 1 SP - 44 EP - 58 PB - Springer CY - Switzerland AN - OPUS4-48585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Oblique testing of a partially filled tank on a tilt table N2 - Braking-in-a-turn maneuvers represent a critical operational condition for any vehicle, due to the associated longitudinal and lateral perturbations to which it is subjected, which maximize the load transfer among the different wheels, and result in vehicle´s poor lateral stability and deficient braking performance. In this paper, a suspended vehicle supporting a partially filled 10 litter-capacity container, is set on a tilt table at oblique angles, in order to simulate a braking-in-a-turn maneuver. The measurements are assessed in the time and frequency domains, on the basis of the lateral load transfer ratio and the infrastructure fatigue damage. The outputs from the experiment show that the Minimum fill level (one-quarter), generates the larger lateral load transfer (0.45). Such fill level also causes the greatest ratios for the alternate stress over the mean stress on the infrastructure. The spectral analysis reveals the dominance of one of the sloshing frequencies during such combined perturbation condition. T2 - IFToMM world congress CY - Krakow, Poland DA - 30.06.2019 KW - Sloshing KW - Lateral stability KW - Load transfer KW - Braking-in-a-turn maneuvers KW - Infrastructure damage KW - Experimental approach PY - 2019 SN - 978-3-030-20130-2 SN - 978-3-030-20131-9 U6 - https://doi.org/10.1007/978-3-030-20131-9_359 SN - 2211-0984 VL - 73 SP - 3641 EP - 3650 PB - Springer Nature Switzerland AG 2019 AN - OPUS4-48454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Otremba, Frank A1 - Hildebrand, R. A1 - Romero Navarrete, J. A. A1 - Sklorz, Christian ED - Otremba, Frank T1 - A simplified analytical approach on the dynamic pressures in cylindrical vertical tanks N2 - A simplified methodology is proposed to estimate the dynamic pressures developed within partially filled cylindrical vertical tanks when subjected to earthquake-related horizontal accelerations. The total pressure at the bottom of the tank is calculated as the superposition of vertical and horizontal pressures. While the magnitude of the vertical pressure depends on the free surface height of the liquid, the horizontal pressure depends on the magnitude of the horizontal acceleration and on the diameter of the tank. The liquid free surface oscillation angle is simulated based upon the principles of the simple pendulum analogy for sloshing. The length of the pendulum, however, is set on the basis of a methodology to calculate the free sloshing frequency of partially filled containers. Such a methodology is experimentally verified in this work. The outputs of the model for full scale situations, suggest that the lateral perturbation - sloshing phenomenon (earthquake effect) can generate an increase in the total pressure of 56% above the no lateral perturbation situation, further suggesting that such an overpressure should be taken into account when designing tanks that could be potentially subjected to earthquake-related perturbations. KW - Vertical cylindrical tanks KW - Pendulum analogy KW - Experimental approach KW - Sloshing, transition matrix approach KW - Hazmat PY - 2021 SN - 978-981-15-8273-8 SP - 1 EP - 15 PB - Springer AN - OPUS4-51982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Otremba, Frank A1 - Romero, Jose A. ED - Sio-Iong Ao, T1 - Modeling of vehicle-cargo interaction under different environments N2 - The safety of any transport system depends on a multitude of conditions, parameters and circumstances. In this regard, the interaction of the carried Cargo with the carrying vehicle represents a factor influencing the overall safety of any transport. The effects of cargo on the vehicle have to do with the vibration or shifting of the cargo, affecting the lateral stability of the vehicles and the braking performance. Such interaction has been associated to road crashes and maritime vehicles capsizing. Simulation of cargo-vehicle interaction thus represents an interesting Topic when a reduction in transport accidents is pursued. In this paper, the fundamentals principles for simulating the interaction of the liquid cargo and the carrying vehicle, is presented. In the case of a road transportation, the proposed simplified Simulation methodologies, show good agreement with a full-scale test. KW - Transition matrix approach KW - Braking performance KW - Experimental approach KW - Newton approach Ship stability KW - Sloshing PY - 2018 SN - 978-981-13-2191-7 SP - 47 EP - 57 PB - Springer Nature CY - Singapore AN - OPUS4-46773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -