TY - JOUR A1 - Gornushkin, Igor B. A1 - Smith, B.W. A1 - Panne, Ulrich A1 - Omenetto, N. T1 - Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy JF - Applied spectroscopy N2 - A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation , 10%) and accuracy (within 6 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. KW - Spatial heterodyne spectroscopy KW - Laser-induced breakdown spectroscopy KW - Fourier transform spectroscopy KW - LIBS KW - Laser-induced plasma KW - Interferometry PY - 2014 DO - https://doi.org/10.1366/14-07544 SN - 0003-7028 SN - 1943-3530 VL - 68 IS - 9 SP - 1076 EP - 1084 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-32163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Merk, Sven A1 - Demidov, Alexandr A1 - Panne, Ulrich A1 - Shabanov, Sergej V. A1 - Smith, B.W. A1 - Omenetto, N. T1 - Tomography of single and double pulse laser-induced plasma using Radon transform technique JF - Spectrochimica acta B N2 - The Radon transform tomography is used for reconstruction of the emissivity distribution in single- (SP) and double-pulse (DP) laser induced plasmas in orthogonal geometry. The orthogonal DP plasma is intrinsically asymmetric and thus suitable for the Radon reconstruction. The DP plasma consists of two plasmas separated by a short time interval of ~ 1 µs. The first plasma is created in air near the surface of a Si wafer and is followed (pre-ablation mode) or preceded (post-ablation mode) by the second plasma induced on this surface. A spectrometer moves in a semi-circular path around the plasma keeping the plasma in the rotation center. The optical detection is arranged so that a thin plasma layer parallel to the target surface is monitored. The axial symmetry of the SP plasma is investigated by comparing data from the Abel inversion taken at different angles and Radon reconstruction. The multi-angle measurements are used to estimate errors of the Abel reconstruction due to asymmetries of the plasma. Time-resolved Radon reconstruction in white light is performed for the DP plasma in both pre- and post-ablation modes. In the former case, the effect of ablated aerosol on the formation of the air plasma is monitored. In the latter case, a formation of an asymmetric compression shock created by the target plasma inside the air plasma is visualized. This observation is supported by computer simulations. An interaction of the two plasmas is studied by spectrally resolved Radon reconstruction revealing a complex distribution of target and ambient species inside the plasma at all studied delay times. Overall, it is demonstrated that Radon-based tomography is an informative tool to study transient asymmetric laser induced plasmas. KW - Radon transform tomography of SP KW - DP laser induced plasma KW - LIBS KW - Orthogonal double pulse plasma PY - 2012 DO - https://doi.org/10.1016/j.sab.2012.06.033 SN - 0584-8547 SN - 0038-6987 VL - 76 SP - 203 EP - 213 PB - Elsevier CY - Amsterdam AN - OPUS4-27438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Sven A1 - Demidov, Alexandr A1 - Shelby, D. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Smith, B.W. A1 - Omenetto, N. T1 - Diagnostic of laser-induced plasma using Abel inversion and radiation modeling JF - Applied spectroscopy N2 - A method based on matching synthetic and experimental emissivity spectra was applied to spatially resolved measurements of a laser-induced plasma ignited in argon at atmospheric pressure. The experimental emissivity spectra were obtained by Abel inversion of intensity spectra measured from a thin plasma slice perpendicular to the plasma axis. The synthetic spectra were iteratively calculated from an equilibrium model of plasma radiation that included free free, free–bound, and bound–bound transitions. From both the experimental and synthetic emissivity spectra, spatial and temporal distributions of plasma temperature and number densities of plasma species (atoms, ions, and electrons) were obtained and compared. For the best-fit synthetic spectra, the temperature and number densities were read directly from the model; for experimental spectra, these parameters were obtained by traditional Boltzmann plot and Stark broadening methods. In both cases, the same spectroscopic data were used. Two approaches revealed a close agreement in electron number densities, but differences in plasma excitation temperatures and atom number densities. The trueness of the two methods was tested by the direct Abel transform that reconstructed the original intensity spectra for comparing them to the measured spectra. The comparison yielded a 9 and 13% difference between the reconstructed and experimental spectra for the numerical and traditional methods, respectively. It was thus demonstrated that the spectral fit method is capable of providing more accurate plasma diagnostics than the Boltzmann plot and Stark broadening methods. KW - Abel inversion KW - Laser-induced plasma KW - LIBS KW - Plasma spectrum analysis PY - 2013 DO - https://doi.org/10.1366/12-06929 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 8 SP - 851 EP - 859 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-30433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shelby, D. A1 - Merk, Sven A1 - Smith, B.W. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Omenetto, N. T1 - Temperature evaluation by simultaneous emission and saturated fluorescence measurements: A critical theoretical and experimental appraisal of the approach JF - Spectrochimica acta B N2 - Temperature is one of the most important physical parameters of plasmas induced by a focused laser beam on solid targets, and its experimental evaluation has received considerable attention. An intriguing approach, first proposed by Kunze (H.-J. Kunze, Experimental check of local thermodynamic equilibrium in discharges, Appl. Opt., 25 (1986) 13–13.) as a check of the existence of local thermodynamic equilibrium, is based upon the simultaneous measurement of the thermal emission and the optically saturated fluorescence of the same selected atomic transition. The approach, whose appealing feature is that neither the calibration of the set-up nor the spontaneous radiative probability of the transitions is needed, has not yet been applied, to our knowledge, to analytical flames and plasmas. A critical discussion of the basic requirements for the application of the method, its advantages, and its experimental limitations, is therefore presented here. For our study, Ba+ transitions in a plasma formed by focusing a pulsed Nd:YAG laser (1064 nm) on a glass sample containing BaO are selected. At various delay times from the plasma initiation, a pulsed, excimer-pumped dye laser tuned at the center of two Ba transitions (6s ²S1/2 → 6p ²P°3/2; 455.403 nm and 6p ²P°1/2 → 6d ²S1/2; 452.493 nm) is used to enhance the populations of the excited levels (6p ²P°3/2 and 6d ²S1/2) above their thermal values. The measured ratio of the emission and direct line fluorescence signals observed at 614.171 nm (6p ²P°3/2 → 5d ²D5/2) and 489.997 nm (6d ²S1/2 → 6p ²P°3/2) is then related to the excitation temperature of the plasma. Our conclusion is that the approach, despite being indeed attractive and clever, does not seem to be easily applicable to flames and plasmas, in particular to transient and inhomogeneous plasmas such as those induced by lasers on solids. KW - Plasma temperature KW - Optically saturated fluorescence KW - Laser induced plasma KW - Barium ion emission KW - Emission/fluorescence ratio PY - 2013 DO - https://doi.org/10.1016/j.sab.2013.09.002 SN - 0584-8547 SN - 0038-6987 VL - 89 SP - 50 EP - 59 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -