TY - CONF A1 - Oesch, Tyler A1 - Weise, Frank A1 - Meinel, Dietmar A1 - Krütt, Enno T1 - In-situ analysis of water transport in concrete completed using X-ray computed tomography N2 - The water-transport characteristics of concrete have a major impact on its resistance to damaging chemical processes such as Alkali-Silica-Reaction (ASR). Water transport in samples of damaged and undamaged concrete was measured using in-situ CT. The resulting measurements of water-front movement relative to time and the change in 3D-moisture distribution within the samples, are needed for calibration and validation of water-transport numerical models. T2 - 3rd International Conference on Tomography of Materials and Structures CY - Lund, Sweden DA - 26.06.2017 KW - X-ray computed tomography (CT) KW - In situ KW - Water transport KW - Alkali-silica-reaction (ASR) PY - 2017 AN - OPUS4-40876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on Industrial Computed Tomography CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing Bar KW - Computed Tomography KW - In-Situ KW - High-Performance Concrete PY - 2016 AN - OPUS4-35521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes T2 - Proceedings of the 6th conference on industrial computed tomography (iCT) N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on industrial computed tomography (iCT) CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing bar KW - Computed tomography KW - In-situ KW - High-performance concrete PY - 2016 UR - http://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id83.pdf SN - 1435-4934 VL - 21 IS - 2 SP - ID 18788, 1 EP - 8 AN - OPUS4-35436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ Röntgencomputertomographie für mechanische, thermische und hydraulische Prozesse N2 - Die Präsentation demonstriert die Fähigkeiten der Röntgencomputertomographie (CT) zur Identifizierung quantitativer Materialeigenschaften wie Faserorientierung und Korrosionsverteilung sowie die Implementierung von CT-Daten innerhalb numerischer Simulationen. Die besondere Stärke der CT, als zerstörungsfreies Prüfverfahren, ermöglicht es, das Materialverhalten und den Versagensprozess während mechanischer, hydraulischer und thermischer Prozesse zu beobachten. Die Ergebnisse einer Reihe von Ex-situ und In-situ Testprogrammen unter Bedingungen wie mechanische Belastung, Wassertransport und thermische Exposition, stellen die Nutzungsmöglichkeiten dieser Verfahren in Kombination mit der CT in eindrucksvoller Weise dar. T2 - InnoTesting Konferenz CY - Wildau, Germany DA - 21.02.2019 KW - Röntgencomputertomographie (CT) KW - In-situ Prüfverfahren KW - Feuchtigkeitsmessung KW - Digitale Bildkorrelation (DVC) KW - Faserverstärkter Beton (FRC) PY - 2019 AN - OPUS4-47442 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ und Ex-situ Röntgencomputertomographie: Messung des Verhaltens von Beton im Verlauf von mechanischen, thermischen und hydraulischen Prozessen N2 - Um das grundlegende Verhalten des Betons zu verstehen, wird eine zerstörungsfreie Messmethode benötigt, die in der Lage ist, nicht nur Änderungen des Materials wie Feuchtigkeitsumverteilung, Korrosion und Dehnung zu messen, sondern auch die innere Struktur des Materials im Dreidimensionalen aufzulösen, so dass Versagensmechanismen und Transportphänomene direkt auf bestimmte Eigenschaften der heterogenen Materialstruktur bezogen werden können. Die Röntgencomputertomographie (CT) hat sich als ideal für solche Zwecke erwiesen. Diese Präsentation demonstriert die Fähigkeiten der CT zur Identifizierung quantitativer Materialeigenschaften wie Faserorientierung, Rissoberfläche, Korrosionsverteilung und Änderungen des volumetrischen Feuchtigkeitsanteils. Durch die Beschreibung der Ergebnisse einer Reihe von Ex-situ und In-situ Testprogrammen für Bedingungen wie mechanische Belastung, Wassertransport und thermische Exposition, sind auch die Nutzungsmöglichkeiten von diesem Verfahren dargestellt. T2 - DGZfP Arbeitskreis Berlin (403. Sitzung) CY - Berlin, Germany DA - 04.12.2018 KW - Röntgencomputertomographie (CT) KW - In-situ Prüfung KW - Faserverstärkter Beton (FRC) KW - Digitale Volumenkorrelation (DVC) KW - Feuchtigkeitsmessung PY - 2018 AN - OPUS4-46932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Weinberger, J. A1 - Oesch, Tyler T1 - Influence of the pre-treatment of PP-fibres by means of electron irradiation on the spalling behaviour of High Strength Concrete T2 - Proceedings from the 5th International Workshop on Concrete Spalling N2 - It is known that the spalling risk of dense, high-strength concretes (HSC) can be reduced by the addition of polypropylene (PP) fibres and, in particular, PP-fibres that have been pre-treated using electron irradiation. It is presumed that the enhanced reduction in spalling resulting from electron irradiation pre-treatment of the fibres can be attributed to enhanced penetration of the molten fibre material into the micro-cracks around the fibres, due to their significantly decreased viscosity. So far there has been no experimental evidence for this. Against this background, this paper gives a com-parative analysis of the mode of action of PP-fibres with and without pre-treatment using multi-scale test methodology. Initially, fire tests on small-scale building components with accompanying damage monitoring veri-fied that the amount of PP-fibres can be halved by using pre-treated PP-fibres without reducing the fire performance of HSC. Detailed investigations of PP-fibres carried out in a completed research project funded by DFG (the German Research Foundation) using digital scanning calorimetry and thermogravimetry measurements (DSC/TG) as well as viscometer measurements showed that the pre-treatment has no significant influence on the melting temperature of the PP-fibres. However, a drastic reduction of the melt viscosity due to the electron irradiation was detectable. Additional dila-tation tests showed that the expansion behaviour of both fibre types and their melts do not differ significantly [1]. Rather, both fibre types generate high pressures when their thermal expansion is hindered. Further detailed investigations by means of continuous heating tests with a low heating rate were carried out on separately produced concrete cylinders. These tests showed that the pre-treatment of the PP-fibres causes earlier dehydration in conjunction with stagnation of thermal expansion of the concrete cylinders (temperature reduction from 180 °C to 170 °C). This is accompanied by in-creased acoustic emission activity during the thermal expansion tests. This leads to the assumption that the pre-treatment of PP-fibres results in earlier micro-crack development. However, it was not possible to confirm this assumption by microscopic examination of drilling cores with a diameter of 30 mm exposed to defined temperatures in the range between 150°C and 300°C. Microscopic obser-vations and additional X-ray 3D computed tomography (3D-CT) scans on miniaturised drilling cores exposed to temperature cycles showed a similar networking of fibre beds by means of micro-cracks in HSC for both fibre types. However, energy dispersive X-ray spectroscopy and wavelength disper-sive X-ray spectroscopy revealed fundamental differences in the penetration capacity of the fibre melts of the two fibre types. The increased penetration of the pre-treated PP-fibre melt revealed in these tests, confirms the initial working hypothesis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Polypropylen fibres KW - Explosive spalling KW - HSC KW - HPC KW - Fibre melt KW - Penetration KW - Micro cracking KW - NDT PY - 2017 SN - 0284-5172 SP - 345 EP - 358 AN - OPUS4-42985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Gollwitzer, Christian A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Oesch, Tyler A1 - Onel, Yener A1 - Thiede, Tobias A1 - Zscherpel, Uwe ED - Puente León, F. ED - Zagar, B. T1 - Moderne Methoden der CT-gestützten Strukturanalyse T1 - Modern techniques of CT based structure analysis JF - tm - Technisches Messen N2 - Durch den großflächigen Einsatz der Computertomographie (CT) in unterschiedlichen Industriebereichen steigen auch die Anforderungen an die quantitative Bildanalyse. Subjektive Bildwahrnehmung muss durch objektive Algorithmen ersetzt werden. In diesem Artikel stellt die Bundesanstalt für Materialforschung und -prüfung (BAM), die seit den 1980er Jahren an der Entwicklung der industriellen CT beteiligt ist, anhand ausgewählter Beispiele den aktuellen Stand ihrer Analysemethoden an verschiedenen Anwendungsbeispielen der CT vor. N2 - The increasing use of computed tomography (CT) in various industrial sectors requires more sophisticated techniques of quantitative image analysis. Subjective image perception needs to be replaced by objective algorithms. The German Federal Institute for Materials Research and Testing (BAM) has been involved in the development of industrial CT since the 1980s. This paper summarizes the current status of quantitative 3D image analysis techniques based on selected examples. KW - Computed tomography KW - Computertomographie KW - Röntgen-Refraktion KW - X-Ray refraction KW - Schadensanalyse KW - Damage analysis KW - Normung KW - standardization PY - 2020 DO - https://doi.org/10.1515/teme-2019-0125 SN - 0171-8096 SN - 2196-7113 VL - 87 IS - 2 SP - 81 EP - 91 PB - de Gruyter CY - Berlin AN - OPUS4-50337 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Stelzner, Ludwig A1 - Weise, Frank T1 - Non-destructive evaluation of the contribution of polymer-fiber orientation and distribution characteristics to concrete performance during fire N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion of polymer fibers in high density concrete can significantly mitigate fire damage due to the contribution of the fibers to increased permeability levels at high temperature. This allows vapor pressures caused by the evaporation of internal water during fire to escape from the material without causing significant spalling. Recent microscopic investigations have also shown that the addition of polypropylene (PP) fibers to high-density HPC with a high amount of fine-aggregate has a considerable influence on the nature and character of crack formation due to autogenous shrinkage. Initial cracks, which originate from the fiber beds, undergo further expansion and propagation when concrete is subjected to thermal exposure in excess of 170 °C. It is thus of interest to determine whether the resulting cracks join the adjacent fiber beds and therefore contribute to a significant increase in the permeability of the concrete, which is directly correlated to lower pore pressures and reduced spalling during fire. In this study, X-ray Computed Tomography (CT) was applied to provide a clear demonstration of the interaction between polymer fibers and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fiber types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components, such as polymer fibers, cracks, aggregates and cement matrix, in each image. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fiber characteristics within the concrete. This paper will provide a description of the distribution and orientation characteristics of the polymer fibers within each sample obtained through the CT-based analysis. Using these results, the impact of fiber distribution and orientation characteristics on actual cracking geometries have been measured and visualized. This paper will also provide recommendations for further optimization of the selected materials and propose improved methods for future CT-based analysis techniques. T2 - European Mechanics Society Colloquium 582: Short Fibre Reinforced Cementitious Composites and Ceramics CY - Tallinn, Estonia DA - 20.03.2017 KW - High-performance concrete KW - X-ray computed tomography KW - Polypropylene fibers KW - Fire KW - Orientation PY - 2017 AN - OPUS4-39649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oesch, Tyler A1 - Stenzel, Ludwig A1 - Weise, Frank T1 - Non-destructive Evaluation of the Contribution of Polymer-Fibre Orientation and Distribution Characteristics to Concrete Performance during Fire T2 - Short Fibre Reinforced Cementitious Composites and Ceramics N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion ofpolymer fibres in high density concrete can significantly mitigate this fire damage. The exact mechanisms causing this increased spalling resistance are not yet fully understood, but it is thought that the fibres facilitate moisture transport during fire exposure, which in turn contributes to relief of internal stresses in the spalling-susceptible region. In this study, X-ray Computed Tomography (CT) was applied to observe the interaction between polymer fibres and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fibre types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fibre characteristics within the concrete. The results demonstrated that the orientation of both fibres and cracks in polymerfibre reinforced concrete tend to be anisotropic. The results also indicated that crack geometry characteristics may be correlated with fibre orientation, with cracks tending to run parallel to fibre beds. Clear quantitative relationships were also observed between heating and increasing cracking levels, expressed in terms of both crack surface area and crack volume. KW - Concrete KW - Fire resistance KW - Polymer fibre PY - 2019 SN - 978-3-030-00867-3 DO - https://doi.org/10.1007/978-3-030-00868-0_4 VL - 95 SP - 51 EP - 73 PB - Springer Nature Switzerland AG CY - Zürich AN - OPUS4-51077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oesch, Tyler A1 - Stelzner, Ludwig A1 - Weise, Frank ED - Herrmann, H. ED - Schnell, J. T1 - Non-destructive evaluation of the contribution of polymer-fibre orientation and distribution characteristics to concrete performance during fire T2 - Short Fibre Reinforced Cementitious Composites and Ceramics N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion of polymer fibres in high density concrete can significantly mitigate this fire damage. The exact mechanisms causing this increased spalling resistance are not yet fully under-stood, but it is thought that the fibres facilitate moisture transport during fire exposure, which in turn contributes to relief of internal stresses in the spalling-susceptible region. In this study, X-ray Computed Tomography (CT) was applied to observe the interaction between polymer fibres and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fibre types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fibre characteristics within the concrete. The results demonstrated that the orientation of both fibres and cracks in polymer-fibre reinforced concrete tend to be anisotropic. The results also indicated that crack geometry characteristics may be correlated with fibre orientation, with cracks tending to run parallel to fibre beds. Clear quantitative relationships were also observed between heating and increasing cracking levels, expressed in terms of both crack surface area and crack volume. KW - X-ray Computed Tomography (CT) KW - Polypropylene Fibres KW - Fire Performance KW - Fibre-Reinforced Concrete (FRC) KW - Fibre Orientation Analysis PY - 2019 SN - 978-3-030-00868-0 DO - https://doi.org/10.1007/978-3-030-00868-0 SP - 51 EP - 73 PB - Springer Nature Switzerland AG AN - OPUS4-47206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -