TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on industrial computed tomography (iCT) CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing bar KW - Computed tomography KW - In-situ KW - High-performance concrete PY - 2016 UR - http://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id83.pdf SN - 1435-4934 VL - 21 IS - 2 SP - ID 18788, 1 EP - 8 AN - OPUS4-35436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Stelzner, Ludwig A1 - Weise, Frank T1 - Non-destructive evaluation of the contribution of polymer-fiber orientation and distribution characteristics to concrete performance during fire N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion of polymer fibers in high density concrete can significantly mitigate fire damage due to the contribution of the fibers to increased permeability levels at high temperature. This allows vapor pressures caused by the evaporation of internal water during fire to escape from the material without causing significant spalling. Recent microscopic investigations have also shown that the addition of polypropylene (PP) fibers to high-density HPC with a high amount of fine-aggregate has a considerable influence on the nature and character of crack formation due to autogenous shrinkage. Initial cracks, which originate from the fiber beds, undergo further expansion and propagation when concrete is subjected to thermal exposure in excess of 170 °C. It is thus of interest to determine whether the resulting cracks join the adjacent fiber beds and therefore contribute to a significant increase in the permeability of the concrete, which is directly correlated to lower pore pressures and reduced spalling during fire. In this study, X-ray Computed Tomography (CT) was applied to provide a clear demonstration of the interaction between polymer fibers and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fiber types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components, such as polymer fibers, cracks, aggregates and cement matrix, in each image. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fiber characteristics within the concrete. This paper will provide a description of the distribution and orientation characteristics of the polymer fibers within each sample obtained through the CT-based analysis. Using these results, the impact of fiber distribution and orientation characteristics on actual cracking geometries have been measured and visualized. This paper will also provide recommendations for further optimization of the selected materials and propose improved methods for future CT-based analysis techniques. T2 - European Mechanics Society Colloquium 582: Short Fibre Reinforced Cementitious Composites and Ceramics CY - Tallinn, Estonia DA - 20.03.2017 KW - High-performance concrete KW - X-ray computed tomography KW - Polypropylene fibers KW - Fire KW - Orientation PY - 2017 AN - OPUS4-39649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Weise, Frank T1 - Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR N2 - The thermohydraulic damage mechanism is one of the primary causes for explosive spalling of highperformance concrete. This paper presents the spatially- and temporally-resolved analysis of the thermally-induced moisture transport and reconfiguration processes by means of X-ray-CT and 1HNMR. Thermal testing results for a high-performance concrete, which is sensitive to explosive spalling and which was prepared with and without added polypropylene fibres, are presented in this paper. These results indicate that the addition of fibres leads to a faster and deeper migration of the drying front and, thus, to a lower likelihood of vapour-pressure induced explosive spalling. KW - Explosive spalling KW - Thermally-induced moisture transport KW - X-ray-CT KW - 1H-NMR KW - High-performance concrete PY - 2019 U6 - https://doi.org/10.1016/j.conbuildmat.2019.07.065 SN - 0950-0618 VL - 224 SP - 600 EP - 609 PB - Elsevier Ltd. AN - OPUS4-48727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -