TY - CONF A1 - Oesch, Tyler A1 - Weise, Frank A1 - Marx, Heidi A1 - Kositz, M. A1 - Huenger, K.-J. T1 - Analysis of the porosity of alkali-sensitive aggregates for the assessment of microstructure-dependent solubility in the context of ASR N2 - Intensified Alkali-Silica Reaction (ASR) damage has occurred on German roadways in recent years, leading to requirements for compulsory pre-construction investigation of aggregate alkali sensitivity using concrete tests with external alkali supply. However, since these tests are time-consuming and cost-intensive, there is interest in replacing them with a solubility test on pure aggregate in 0.1 M KOH solution at 80°C with a defined NaCl content (1wt.-%). In this context, the influence of aggregate pore structure on SiO2 and Al2O3 solubility was investigated in this project. This paper compares the results of porosity studies with X-ray Computed Tomography (3D-CT) and the Brunauer-Emmett-Teller (BET) method on individual quarried and river gravel granules of both rhyolite and greywacke. For visualization and quantification of both externally accessible and fully enclosed surfaces of granules using X-ray 3D-CT, special software tools were developed. The results demonstrated that the river gravel granules had significantly larger externally accessible surfaces than the quarried granules. BET measurements on individual stones showed, as expected, that measured surfaces were about three orders of magnitude larger than those from the X-ray 3D-CT analyses due to the higher spatial resolution of BET. There was no apparent correlation between the X-ray 3D-CT and BET surface areas. Mercury porosimetry measurements indicate that this may be due to the presence of significant porosity below the spatial resolution of the X-ray 3D-CT. A comparison of SiO2 and Al2O3 solubility measurements with the X-ray 3D-CT and BET surface area data resulted only in weak, inconclusive correlations, indicating the need for further experimental investigation. T2 - Microdurability Webinar CY - Online meeting DA - 12.10.2020 KW - X-ray Computed Tomography (CT) KW - Brunauer-Emmett-Teller (BET) Method KW - Alkali-Silica Reaction (ASR) KW - Porosity KW - Solubility PY - 2020 AN - OPUS4-51429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Bruno, Giovanni T1 - Detection and Quantification of Cracking in Concrete Aggregate through Virtual Data Fusion of X-ray Computed Tomography Images JF - Materials N2 - In this work, which is part of a larger research program, a framework called “virtual data fusion“ was developed to provide an automated and consistent crack detection method that allows for the cross-comparison of results from large quantities of X-ray Computed Tomography (CT) data. A partial implementation of this method in a custom program was developed for use in research focused on crack quantification in Alkali-Silica Reaction (ASR)-sensitive concrete aggregates. During the CT image processing, a series of image analyses tailored for detecting specific, individual crack-like characteristics were completed. The results of these analyses were then “fused” in order to identify crack-like objects within the images with much higher accuracy than that yielded by any individual image analysis procedure. The results of this strategy demonstrated the success of the program in effectively identifying crack-like structures and quantifying characteristics, such as surface area and volume. The results demonstrated that the source of aggregate has a very significant impact on the amount of internal cracking, even when the mineralogical characteristics remain very similar. River gravels, for instance, were found to contain significantly higher levels of internal cracking than quarried stone aggregates of the same mineralogical type. KW - X-ray Computed Tomography (CT) KW - Alkali-Silica Reaction (ASR) KW - Crack Detection KW - Damage Quantification KW - ASR-Sensitive Aggregate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512170 DO - https://doi.org/10.3390/ma13183921 VL - 13 IS - 18 SP - Paper 3921 PB - MDPI CY - Basel, Switzerland AN - OPUS4-51217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Rachmatulin, Natalia A1 - Fontana, Patrick A1 - Oesch, Tyler A1 - Bruno, Giovanni A1 - Radi, E. A1 - Sevostianov, I. T1 - Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite JF - International Journal of Engineering Science N2 - This paper focuses on the experimental evaluation of one of the key microstructural Parameters of a short-fiber reinforced composite – the orientation distribution of fibers. It is shown that computed tomography (CT) produces results suitable for reconstruction of the orientation distribution function. This function is used for calculation of the effective elastic properties of polymer-fiber reinforced concrete. Explicit formulas are derived for overall elastic moduli accounting for orientation distribution in the frameworks of the noninteraction approximation, the Mori–Tanaka–Benveniste scheme, and the Maxwell scheme. The approach illustrated can be applied to any kind of composite material. KW - Computed tomography KW - Orientation distribution KW - Effective properties KW - Fiber-reinforced composite PY - 2018 DO - https://doi.org/10.1016/j.ijengsci.2017.10.002 SN - 0020-7225 SN - 1879-2197 VL - 122 SP - 14 EP - 29 PB - Elsevier AN - OPUS4-42814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oesch, Tyler A1 - Stelzner, Ludwig A1 - Weise, Frank ED - Herrmann, H. ED - Schnell, J. T1 - Non-destructive evaluation of the contribution of polymer-fibre orientation and distribution characteristics to concrete performance during fire T2 - Short Fibre Reinforced Cementitious Composites and Ceramics N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion of polymer fibres in high density concrete can significantly mitigate this fire damage. The exact mechanisms causing this increased spalling resistance are not yet fully under-stood, but it is thought that the fibres facilitate moisture transport during fire exposure, which in turn contributes to relief of internal stresses in the spalling-susceptible region. In this study, X-ray Computed Tomography (CT) was applied to observe the interaction between polymer fibres and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fibre types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fibre characteristics within the concrete. The results demonstrated that the orientation of both fibres and cracks in polymer-fibre reinforced concrete tend to be anisotropic. The results also indicated that crack geometry characteristics may be correlated with fibre orientation, with cracks tending to run parallel to fibre beds. Clear quantitative relationships were also observed between heating and increasing cracking levels, expressed in terms of both crack surface area and crack volume. KW - X-ray Computed Tomography (CT) KW - Polypropylene Fibres KW - Fire Performance KW - Fibre-Reinforced Concrete (FRC) KW - Fibre Orientation Analysis PY - 2019 SN - 978-3-030-00868-0 DO - https://doi.org/10.1007/978-3-030-00868-0 SP - 51 EP - 73 PB - Springer Nature Switzerland AG AN - OPUS4-47206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Sturm, Patrick A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten A1 - Bartholmai, Matthias A1 - Kowarik, Stefan T1 - Proposed Project SealWasteSafe: Materials Technology, Quality Assurance and Monitoring Techniques for Safe Sealing Systems in Underground Repositories N2 - The proposed BAM project SealWasteSafe will advance the state of the art for the construction and monitoring of safe sealing systems for underground repositories of radioactive or toxic waste. During this project, a novel salt concrete exhibiting neither significant cracking nor shrinkage will be optimized for use in the sealing systems. The composition of this material will be based on alkali-activated materials, which are characterized by particularly small thermal deformations during the hardening reaction. Quality assurance and continuous monitoring systems developed during this project will be demonstrated not only for high reliability, but also for resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. A variety of sensors will be used in combination with wireless Radio Frequency Identification (RFID) technology to record moisture, temperature, and, if necessary, corrosion activity within the sealing system. Distributed Fibre Optic Sensor (FOS) technology will also be used for strain, temperature, and moisture content measurement. Ultrasound-based measuring methods will be utilized for the detection of cracks and delaminations. Additionally, digital image correlation and acoustic emission analysis will be used for deformation measurements and crack detection. A novel borehole probe and advanced ultrasound imaging techniques will be further developed to track cracks and delaminations within the host rock in 3D. The surface-based Large Aperture Ultrasound System (LAUS) will also be utilized to detect cracks and delaminations deep below the exterior surface of the sealing system. Although the focus of this project will be on the host rock salt, the resulting technologies will be intentionally developed in a way that facilitates their adaptation to other host rocks. T2 - 2nd International Conference on Monitoring in Geological Disposal of Radioactive Waste CY - Paris, France DA - 09.04.2019 KW - SealWasteSafe KW - Radioactive Waste Disposal KW - Underground Repositories KW - Alkali-Activated Material KW - Monitoring PY - 2019 AN - OPUS4-47776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten A1 - Effner, Ute T1 - Quality assurance of engineered barriers in underground waste disposals N2 - This poster provides an overview of ultrasonic investigations of an engineered test barrier at ERAM Morsleben, which were completed as part of contractual work with the Bundesgesellschaft für Endlagerung mbH (BGE). This includes both experiments with the Large Aperture Ultrasound System (LAUS) and the ultrasonic borehole array. Also included in the poster is a description of the planned BAM thematic project “SealWasteSafe”. In particular, the proposed geopolymer materials are described and future research requirements are detailed. T2 - 1. Statuskonferenz Endlagerung von hochradioaktiven Abfällen CY - Berlin, Germany DA - 08.11.2018 KW - Large Aperture Ultrasound System (LAUS) KW - Ultrasonic Borehole Array KW - SealWasteSafe KW - Geopolymer KW - Crack Detection PY - 2018 AN - OPUS4-47021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Meinel, Dietmar A1 - Gollwitzer, Christian T1 - Quantitative in-situ analysis of water transport in concrete completed using X-ray computed tomography JF - Transport in Porous Media N2 - This paper describes a novel methodology for quantitative in-situ moisture measurement without tracking agents using X-ray computed tomography (XCT). The high levels of grey-scale precision required for the measurement of moisture without tracking agents resulted in the need for an additional image calibration procedure to correct for water-related X-ray scattering and for equipment-variability related artefacts arising during in-situ testing. This calibration procedure was developed on the basis of existing principles of XCT image cor-rection. Resulting images of moisture distribution exhibit a high level of agreement with expected material behaviour. This research demonstrated that XCT can be successfully used to measure both moisture-front movement over time and changes in 3D moisture distribution within samples. This approach to moisture measurement lays the groundwork for the planned future investigation of the interaction between cracking induced by varying chemical and mechanical processes and water transport in concrete. KW - X-ray computed tomography (XCT) KW - In-situ testing KW - Water transport KW - Quantitative moisture measurement KW - Concrete PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474395 DO - https://doi.org/10.1007/s11242-018-1197-9 SN - 1573-1634 VL - 127 IS - 2 SP - 371 EP - 389 PB - Springer Netherlands AN - OPUS4-47439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Weise, Frank T1 - Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR JF - Construction and Building Materials N2 - The thermohydraulic damage mechanism is one of the primary causes for explosive spalling of highperformance concrete. This paper presents the spatially- and temporally-resolved analysis of the thermally-induced moisture transport and reconfiguration processes by means of X-ray-CT and 1HNMR. Thermal testing results for a high-performance concrete, which is sensitive to explosive spalling and which was prepared with and without added polypropylene fibres, are presented in this paper. These results indicate that the addition of fibres leads to a faster and deeper migration of the drying front and, thus, to a lower likelihood of vapour-pressure induced explosive spalling. KW - Explosive spalling KW - Thermally-induced moisture transport KW - X-ray-CT KW - 1H-NMR KW - High-performance concrete PY - 2019 DO - https://doi.org/10.1016/j.conbuildmat.2019.07.065 SN - 0950-0618 VL - 224 SP - 600 EP - 609 PB - Elsevier Ltd. AN - OPUS4-48727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating T2 - Proceedings of the 6th International Workshop on Concrete Spalling due to Fire Exposure N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 UR - https://firespallingworkshop2019.group.shef.ac.uk/wp-content/uploads/2019/09/Fire-Spalling-Workshop_Proceedings.pdf SN - 978-1-5272-4135-0 SP - 181 EP - 190 CY - Sheffield AN - OPUS4-49161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Powierza, Bartosz A1 - Stelzner, Ludwig A1 - Oesch, Tyler A1 - Gollwitzer, Christian A1 - Weise, Frank A1 - Bruno, Giovanni T1 - Water migration in one-side heated concrete: 4D in-situ CT monitoring of the moisture-clog-effect JF - Journal of Nondestructive Evaluation N2 - Explosive spalling due to fire exposure in concrete structures can lead severe damage and, in the worst case, to premature component failure. For this reason, an in situ investigation of water Migration in concrete due to surface heating was undertaken. During these experiments, a miniaturized concrete specimen within a confining and insulating double-hull was subjected to surface heating during simultaneous X-ray computed tomography (CT) scanning. Through the use of subtraction-based Image analysis techniques, it was possible to observe and quantify not only drying within areas of the concrete matrix close to the heated surface, but also the migration of moisture to both pore and matrix regions deeper within the specimen. It was also discovered that the correction of CT images for specimen deformation using DVC and variable detector performance using calibrated image filters significantly improved the quality of the results. This clearly demonstrates the potential of X-ray CT for evaluation of other rapid-density-change phenomena in concrete and other building materials. T2 - 8th Conference on Industrial Computed Tomography (iCT 2018) CY - Wels, Austria DA - 06.02.2018 KW - In-Situ X-ray CT KW - Digital Volume Correlation KW - Heated concrete KW - Water migration KW - Fire PY - 2019 DO - https://doi.org/10.1007/s10921-018-0552-7 SN - 1573-4862 SN - 0195-9298 VL - 38 IS - 1 SP - 15, 1 EP - 11 PB - Springer US CY - New York / Heidelberg AN - OPUS4-47147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -