TY - JOUR A1 - Oesch, Tyler A1 - Landis, E. A1 - Kuchma, D. ED - Lura, P. T1 - A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT JF - Materials and Structures N2 - Fiber-reinforced concretes (FRCs) offer significant improvements in tensile strength and durability compared to most other concrete mixes. However, for safe and efficient use of FRC in large structures, anisotropy of fiber orientation needs to be understood and properly controlled. In this project, both cored samples extracted from a FRC slab and FRC samples cast individually in molds were assessed using X-ray computed tomography (CT) and measurements of fiber orientation were extracted from the resulting CT images. These results showed that fibers within the slab were highly anisotropic in orientation while fibers in individually cast samples showed a much more heterogeneous distribution of orientations. This indicates that fiber orientation is highly dependent on the casting process and suggests that FRC can only be safely and efficiently utilized if anisotropic fiber orientation is properly accounted for during design and optimized casting methods are used during construction. KW - Anisotropic fiber orientation KW - Computed tomography KW - Fiber-reinforced concrete KW - UHPC KW - Hessian analysis KW - Order parameter PY - 2018 UR - https://rdcu.be/OR6k DO - https://doi.org/10.1617/s11527-018-1198-8 SN - 1359-5997 SN - 1871-6873 N1 - xxx VL - 51 IS - 3 SP - Article 73, 1 EP - 13 PB - Springer Netherlands CY - Dordrecht, Niederlande AN - OPUS4-45045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete T2 - Proceedings of NDT-CE 2022 N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - Analyse von Schädigungsprozessen in Beton - Was leistet die CT? Teil3: Fallstudien in Zement- und Betonforschungsanwendungen N2 - Für die Festigkeit von faserverstärkten Betonen spielt die beim Gießvorgang hervorgerufene Faseranisotropie eine wichtige Rolle. In den computertomographischen Aufnahmen lässt sich die anhand der Eigenvektoren der Hessianmatrix an der Faser ermittelte räumliche Orientierung der Fasern berechnen und im sphärischen Koordinatensystem darstellen. Mit für die CT-Anlagen ausgelegten Prüfeinrichtungen ist es möglich mechanische Belastungen, Wärmeeinwirkung und Feuchtetransport in Betonproben während einer CT-Messung durchzuführen. Die Analyse dieser In-situ Messungen erfordert zum Teil speziell auf die Erfordernisse angepasste Auswerteverfahren. Dazu zählen die automatische Rissdetektion oder die Korrektur der Streustrahlung bei der Wasseraufnahme. T2 - Summer School im Rahmen des DFG Schwerpunktprogramms 2020 "Zyklische Schädigungsprozesse in Hochleistungsbetonen im Experimental-Virtual-Lab" CY - Hotel Park Soltau, Soltau, Germany DA - 25.06.2018 KW - Computertomographie KW - Faserorientierungsanalyse KW - In-situ CT KW - Risserkennung KW - Schadenscharakterisierung PY - 2018 AN - OPUS4-45434 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Meng, Birgit T1 - Analysis of moisture transport in unilateral-heated dense high-strength concrete T2 - Proceedings from the 5th International Workshop on Concrete Spalling N2 - Unilateral thermal exposure of concrete building components induces moisture transport processes that have a significant influence on the spalling behaviour of dense high-strength concrete (HSC). These transport processes are based on evaporation and condensation mechanisms of liquid and gaseous water in the pores as well as the chemically bound water within the concrete. The low permeability of HSC and the formation of a saturated zone within building components (also known as a moisture clog) leads to high water-vapour pressures, which contributes to explosive spalling. The formation of these pressures has already been verified by means of pore-pressure measurement techniques. In addition, the redistribution of the moisture within concrete specimens subject to unilateral thermal exposure has been demonstrated on fractured surfaces. Investigations by means of the nuclear magnetic resonance (NMR) relaxometry technique and neutron radiography have shown one-dimensional changes in moisture distribution during thermal exposure. However, none of these methods has been able to depict the moisture distribution in three dimensions (3D), so the link between pore size, concrete micro-structure and moisture content is missing. The research project presented in this paper aims to fill this gap by developing a new multi-level test methodology to characterise non-destructively the temporal course of spatial moisture distribution during unilateral thermal exposure. The procedure used during this programme included the collection of X-ray 3D-computed tomography (CT) measurements using a miniaturised specimen subjected to in-situ thermal exposure and the comparison of those CT results with the results of one-dimensional NMR-relaxometry before and after the heating process. In the first step, a mobile heating device was developed, built and tested. To simulate a unilaterally-heated construction component, a cylindrical specimen made of HSC (Ø = 40 mm, L = 100 mm) was cast into an impermeable glass ceramic shell. The ceramic shell ensured a one-dimensional moisture flux and limited the thermal expansion of the concrete. An additional high-temperature wool (HTW) insulating shell ensured a one-dimensional heat flux. The heating device, which operated using infrared radiation (IR), allowed the unilateral heating of the specimens up to 300 °C using variable heating regimes. In the second step, the mobile heating device was integrated into the CT-scanner, which enabled the collection of measurements before, during and after heating. By subtraction of successive 3D-CT images, X-ray attenuation differences could be resolved three-dimensionally in the specimen and interpreted as changes in the moisture content. Initial results show that this test methodology can monitor the 3D changes of moisture content inside the specimen during thermal exposure. It enables the researcher to visualise areas with moisture accumulation as well as dehydrated areas inside the specimen. Comparative one-dimensional NMR-relaxometry measurements confirm the results of the CT image analysis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Spalling KW - Fire KW - Moisture clog KW - Moisture transport KW - HPC KW - HSC KW - X-ray CT KW - NMR KW - NDT PY - 2017 SN - 0284-5172 SP - 227 EP - 239 AN - OPUS4-42983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Weise, Frank A1 - Marx, Heidi A1 - Kositz, M. A1 - Huenger, K.-J. T1 - Analysis of the porosity of alkali-sensitive aggregates for the assessment of microstructure-dependent solubility in the context of ASR N2 - Intensified Alkali-Silica Reaction (ASR) damage has occurred on German roadways in recent years, leading to requirements for compulsory pre-construction investigation of aggregate alkali sensitivity using concrete tests with external alkali supply. However, since these tests are time-consuming and cost-intensive, there is interest in replacing them with a solubility test on pure aggregate in 0.1 M KOH solution at 80°C with a defined NaCl content (1wt.-%). In this context, the influence of aggregate pore structure on SiO2 and Al2O3 solubility was investigated in this project. This paper compares the results of porosity studies with X-ray Computed Tomography (3D-CT) and the Brunauer-Emmett-Teller (BET) method on individual quarried and river gravel granules of both rhyolite and greywacke. For visualization and quantification of both externally accessible and fully enclosed surfaces of granules using X-ray 3D-CT, special software tools were developed. The results demonstrated that the river gravel granules had significantly larger externally accessible surfaces than the quarried granules. BET measurements on individual stones showed, as expected, that measured surfaces were about three orders of magnitude larger than those from the X-ray 3D-CT analyses due to the higher spatial resolution of BET. There was no apparent correlation between the X-ray 3D-CT and BET surface areas. Mercury porosimetry measurements indicate that this may be due to the presence of significant porosity below the spatial resolution of the X-ray 3D-CT. A comparison of SiO2 and Al2O3 solubility measurements with the X-ray 3D-CT and BET surface area data resulted only in weak, inconclusive correlations, indicating the need for further experimental investigation. T2 - Microdurability Webinar CY - Online meeting DA - 12.10.2020 KW - X-ray Computed Tomography (CT) KW - Brunauer-Emmett-Teller (BET) Method KW - Alkali-Silica Reaction (ASR) KW - Porosity KW - Solubility PY - 2020 AN - OPUS4-51429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Niederleithinger, Ernst A1 - Mielentz, Frank A1 - Effner, Ute A1 - Behrens, Matthias A1 - Friedrich, C. A1 - Mauke, R. A1 - Büttner, C. T1 - Application of ultrasonic techniques for quality assurance of salt concrete engineered barriers: Shape, cracks and delamination N2 - The closure of underground nuclear waste disposal facilities requires reliable gas- and water-tight engineered barriers. In Germany, barriers made from salt concrete have been evaluated in full scale. While the barriers seem to fulfill the requirements regarding permeability, some unexpected cracks have been detected at the surface and at depth. In cooperation between the Federal Company for Radioactive Waste Disposal (BGE) and the Federal Institute for Materials Research and Testing (BAM), several experiments have been carried out to evaluate the applicability for ultrasonic measurements in crack detection and general quality assurance. Both commercial instruments and specially developed devices have been tested on site. Using commercial ultrasonic echo devices designed for concrete inspection it was possible to detect cracks and objects in salt concrete up to a depth of 2 m. The check for delamination in shotcrete is another field of application. A unique device available at BAM, the wide aperture, deep penetration instrument LAUS, was able to locate cracks and objects up to a depth of 8 m so far, which is thought to be a record for ultrasonic echo measurements in concrete. Adapted imaging procedures, partly adopted from geophysics, helped to reveal 3D structure at depth. In addition, we have developed ultrasonic probes to be deployed in boreholes, currently at up to 20 m depth. They can collect information on cracks and other features in a radius of about 1.5 m around the borehole in the current version and might be used in echo or transmission mode. Evaluation experiments have been performed at an experimental barrier at the ERAM site in Morsleben, Germany. The results showed several empty and injected cracks as well as built-in instrumentation. The results have been verified using borehole endoscopy as well as core examination and will be used to set up a reliable quality assurance system for engineered barriers. All instruments are based on ultrasonic shear wave transducers with a frequency range between 25 kHz and 100 kHz. Current research focuses on the improvement of the hardware (e. g. optimization of array characteristics) and imaging techniques such as Reverse Time Migration, both aiming at the improvement of depth of penetration, resolution and probability of detection. T2 - 2nd International Conference on Monitoring in Geological Disposal of Radioactive Waste CY - Paris, France DA - 09.04.2019 KW - Morsleben Repository (ERAM) KW - Engineered Barrier System (EBS) KW - Large Aperture Ultrasonic System (LAUS) KW - Ultrasonic-Echo Borehole Probe KW - Reverse Time Migration (RTM) PY - 2019 AN - OPUS4-47781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Landis, E. A1 - Kuchma, D. T1 - Conventional concrete and UHPC performance-damage relationships identified using computed tomography JF - Journal of Engineering Mechanics N2 - To make significant advances in concrete engineering, it will be necessary to understand the behavior of cementitious materials at the microscale. To achieve this goal, the nature of damage initiation and growth needs to be understood at very small scales. This Research program sought to increase that understanding through the collection of microscale data using X-ray computed tomography (CT). The tensile and compression behavior of both ultra-high performance concrete (UHPC) and conventional concrete were investigated as a part of this program. Relationships were identified between mechanical performance parameters, such as stiffness degradation and work of load, and cracking parameters, such as crack volume and crack surface area, that could be quantified mathematically and implemented into future finite element analysis (FEA) models. The results of this Research program have the potential to improve the accuracy and resiliency of numerical models and to provide insight to the materials engineering community concerning the optimal use of UHPC. KW - Computed tomography (CT) KW - Ultra-high performance concrete (UHPC) KW - Double punch test (DPT) KW - Quantitative damage measurement KW - Damage variable PY - 2016 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0001168 SN - 0733-9399 VL - 142 IS - 12 SP - 04016101-1 EP - 04016101-10 PB - American Society of Civil Engineers CY - Reston, VA, USA AN - OPUS4-38345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Bruno, Giovanni T1 - Detection and Quantification of Cracking in Concrete Aggregate through Virtual Data Fusion of X-ray Computed Tomography Images JF - Materials N2 - In this work, which is part of a larger research program, a framework called “virtual data fusion“ was developed to provide an automated and consistent crack detection method that allows for the cross-comparison of results from large quantities of X-ray Computed Tomography (CT) data. A partial implementation of this method in a custom program was developed for use in research focused on crack quantification in Alkali-Silica Reaction (ASR)-sensitive concrete aggregates. During the CT image processing, a series of image analyses tailored for detecting specific, individual crack-like characteristics were completed. The results of these analyses were then “fused” in order to identify crack-like objects within the images with much higher accuracy than that yielded by any individual image analysis procedure. The results of this strategy demonstrated the success of the program in effectively identifying crack-like structures and quantifying characteristics, such as surface area and volume. The results demonstrated that the source of aggregate has a very significant impact on the amount of internal cracking, even when the mineralogical characteristics remain very similar. River gravels, for instance, were found to contain significantly higher levels of internal cracking than quarried stone aggregates of the same mineralogical type. KW - X-ray Computed Tomography (CT) KW - Alkali-Silica Reaction (ASR) KW - Crack Detection KW - Damage Quantification KW - ASR-Sensitive Aggregate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512170 DO - https://doi.org/10.3390/ma13183921 VL - 13 IS - 18 SP - Paper 3921 PB - MDPI CY - Basel, Switzerland AN - OPUS4-51217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Rachmatulin, Natalia A1 - Fontana, Patrick A1 - Oesch, Tyler A1 - Bruno, Giovanni A1 - Radi, E. A1 - Sevostianov, I. T1 - Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite JF - International Journal of Engineering Science N2 - This paper focuses on the experimental evaluation of one of the key microstructural Parameters of a short-fiber reinforced composite – the orientation distribution of fibers. It is shown that computed tomography (CT) produces results suitable for reconstruction of the orientation distribution function. This function is used for calculation of the effective elastic properties of polymer-fiber reinforced concrete. Explicit formulas are derived for overall elastic moduli accounting for orientation distribution in the frameworks of the noninteraction approximation, the Mori–Tanaka–Benveniste scheme, and the Maxwell scheme. The approach illustrated can be applied to any kind of composite material. KW - Computed tomography KW - Orientation distribution KW - Effective properties KW - Fiber-reinforced composite PY - 2018 DO - https://doi.org/10.1016/j.ijengsci.2017.10.002 SN - 0020-7225 SN - 1879-2197 VL - 122 SP - 14 EP - 29 PB - Elsevier AN - OPUS4-42814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mellios, N. A1 - Oesch, Tyler A1 - Spyridis, P. T1 - Finite element modelling of UHPC under pulsating load using X-ray computed tomography based fiber distributions JF - Materials and structures N2 - The benefits of including fibers in ultra-high performance concrete (UHPC) are attributed to their good bond with the matrix and, hence, an optimal utilization of their properties. At the same time, though, fiber reinforcement may contribute to anisotropy in the composite material and induce weak areas. The influence of the fibers’ orientation on the material properties is a matter of current scientific discourse and it is known to play a vital role in structural design. In the case studies presented herein, mechanical laboratory tests using pulsating load regimes on UHPC with a strength of more than 200 MPa were simulated by use of finite element models. The orientations of the fibers were measured for each test sample prior to failure using an X-ray computed tomography (CT) scanner, and these orientations are explicitly implemented into the model. The paper discusses the methodology of merging data retrieved by CT image processing and state-of-the-art FE simulation techniques Moreover, the CT scanning was carried out throughout the testing procedure, which further enables the comparison of the mechanical tests and the FE models in terms of damage propagation and failure patterns. The results indicate that the overall fiber configuration and behavior of the samples can be realistically modelled and validated by the proposed CT-FE coupling, which can enhance the structural analysis and design process of elements produced with steel fiber reinforced and UHPC materials. KW - Ultra-high performance concrete KW - Steel fiber reinforced concrete KW - Fiber orientation KW - X-ray computed tomography KW - Non-linear finite element modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542105 DO - https://doi.org/10.1617/s11527-021-01833-4 SN - 1871-6873 VL - 55 IS - 1 SP - 1 EP - 20 PB - Springer CY - Dordrecht AN - OPUS4-54210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Weise, Frank A1 - Meinel, Dietmar A1 - Krütt, Enno T1 - In-situ analysis of water transport in concrete completed using X-ray computed tomography N2 - The water-transport characteristics of concrete have a major impact on its resistance to damaging chemical processes such as Alkali-Silica-Reaction (ASR). Water transport in samples of damaged and undamaged concrete was measured using in-situ CT. The resulting measurements of water-front movement relative to time and the change in 3D-moisture distribution within the samples, are needed for calibration and validation of water-transport numerical models. T2 - 3rd International Conference on Tomography of Materials and Structures CY - Lund, Sweden DA - 26.06.2017 KW - X-ray computed tomography (CT) KW - In situ KW - Water transport KW - Alkali-silica-reaction (ASR) PY - 2017 AN - OPUS4-40876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on Industrial Computed Tomography CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing Bar KW - Computed Tomography KW - In-Situ KW - High-Performance Concrete PY - 2016 AN - OPUS4-35521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes T2 - Proceedings of the 6th conference on industrial computed tomography (iCT) N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on industrial computed tomography (iCT) CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing bar KW - Computed tomography KW - In-situ KW - High-performance concrete PY - 2016 UR - http://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id83.pdf SN - 1435-4934 VL - 21 IS - 2 SP - ID 18788, 1 EP - 8 AN - OPUS4-35436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ Röntgencomputertomographie für mechanische, thermische und hydraulische Prozesse N2 - Die Präsentation demonstriert die Fähigkeiten der Röntgencomputertomographie (CT) zur Identifizierung quantitativer Materialeigenschaften wie Faserorientierung und Korrosionsverteilung sowie die Implementierung von CT-Daten innerhalb numerischer Simulationen. Die besondere Stärke der CT, als zerstörungsfreies Prüfverfahren, ermöglicht es, das Materialverhalten und den Versagensprozess während mechanischer, hydraulischer und thermischer Prozesse zu beobachten. Die Ergebnisse einer Reihe von Ex-situ und In-situ Testprogrammen unter Bedingungen wie mechanische Belastung, Wassertransport und thermische Exposition, stellen die Nutzungsmöglichkeiten dieser Verfahren in Kombination mit der CT in eindrucksvoller Weise dar. T2 - InnoTesting Konferenz CY - Wildau, Germany DA - 21.02.2019 KW - Röntgencomputertomographie (CT) KW - In-situ Prüfverfahren KW - Feuchtigkeitsmessung KW - Digitale Bildkorrelation (DVC) KW - Faserverstärkter Beton (FRC) PY - 2019 AN - OPUS4-47442 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ und Ex-situ Röntgencomputertomographie: Messung des Verhaltens von Beton im Verlauf von mechanischen, thermischen und hydraulischen Prozessen N2 - Um das grundlegende Verhalten des Betons zu verstehen, wird eine zerstörungsfreie Messmethode benötigt, die in der Lage ist, nicht nur Änderungen des Materials wie Feuchtigkeitsumverteilung, Korrosion und Dehnung zu messen, sondern auch die innere Struktur des Materials im Dreidimensionalen aufzulösen, so dass Versagensmechanismen und Transportphänomene direkt auf bestimmte Eigenschaften der heterogenen Materialstruktur bezogen werden können. Die Röntgencomputertomographie (CT) hat sich als ideal für solche Zwecke erwiesen. Diese Präsentation demonstriert die Fähigkeiten der CT zur Identifizierung quantitativer Materialeigenschaften wie Faserorientierung, Rissoberfläche, Korrosionsverteilung und Änderungen des volumetrischen Feuchtigkeitsanteils. Durch die Beschreibung der Ergebnisse einer Reihe von Ex-situ und In-situ Testprogrammen für Bedingungen wie mechanische Belastung, Wassertransport und thermische Exposition, sind auch die Nutzungsmöglichkeiten von diesem Verfahren dargestellt. T2 - DGZfP Arbeitskreis Berlin (403. Sitzung) CY - Berlin, Germany DA - 04.12.2018 KW - Röntgencomputertomographie (CT) KW - In-situ Prüfung KW - Faserverstärkter Beton (FRC) KW - Digitale Volumenkorrelation (DVC) KW - Feuchtigkeitsmessung PY - 2018 AN - OPUS4-46932 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Weinberger, J. A1 - Oesch, Tyler T1 - Influence of the pre-treatment of PP-fibres by means of electron irradiation on the spalling behaviour of High Strength Concrete T2 - Proceedings from the 5th International Workshop on Concrete Spalling N2 - It is known that the spalling risk of dense, high-strength concretes (HSC) can be reduced by the addition of polypropylene (PP) fibres and, in particular, PP-fibres that have been pre-treated using electron irradiation. It is presumed that the enhanced reduction in spalling resulting from electron irradiation pre-treatment of the fibres can be attributed to enhanced penetration of the molten fibre material into the micro-cracks around the fibres, due to their significantly decreased viscosity. So far there has been no experimental evidence for this. Against this background, this paper gives a com-parative analysis of the mode of action of PP-fibres with and without pre-treatment using multi-scale test methodology. Initially, fire tests on small-scale building components with accompanying damage monitoring veri-fied that the amount of PP-fibres can be halved by using pre-treated PP-fibres without reducing the fire performance of HSC. Detailed investigations of PP-fibres carried out in a completed research project funded by DFG (the German Research Foundation) using digital scanning calorimetry and thermogravimetry measurements (DSC/TG) as well as viscometer measurements showed that the pre-treatment has no significant influence on the melting temperature of the PP-fibres. However, a drastic reduction of the melt viscosity due to the electron irradiation was detectable. Additional dila-tation tests showed that the expansion behaviour of both fibre types and their melts do not differ significantly [1]. Rather, both fibre types generate high pressures when their thermal expansion is hindered. Further detailed investigations by means of continuous heating tests with a low heating rate were carried out on separately produced concrete cylinders. These tests showed that the pre-treatment of the PP-fibres causes earlier dehydration in conjunction with stagnation of thermal expansion of the concrete cylinders (temperature reduction from 180 °C to 170 °C). This is accompanied by in-creased acoustic emission activity during the thermal expansion tests. This leads to the assumption that the pre-treatment of PP-fibres results in earlier micro-crack development. However, it was not possible to confirm this assumption by microscopic examination of drilling cores with a diameter of 30 mm exposed to defined temperatures in the range between 150°C and 300°C. Microscopic obser-vations and additional X-ray 3D computed tomography (3D-CT) scans on miniaturised drilling cores exposed to temperature cycles showed a similar networking of fibre beds by means of micro-cracks in HSC for both fibre types. However, energy dispersive X-ray spectroscopy and wavelength disper-sive X-ray spectroscopy revealed fundamental differences in the penetration capacity of the fibre melts of the two fibre types. The increased penetration of the pre-treated PP-fibre melt revealed in these tests, confirms the initial working hypothesis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Polypropylen fibres KW - Explosive spalling KW - HSC KW - HPC KW - Fibre melt KW - Penetration KW - Micro cracking KW - NDT PY - 2017 SN - 0284-5172 SP - 345 EP - 358 AN - OPUS4-42985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Gollwitzer, Christian A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Oesch, Tyler A1 - Onel, Yener A1 - Thiede, Tobias A1 - Zscherpel, Uwe ED - Puente León, F. ED - Zagar, B. T1 - Moderne Methoden der CT-gestützten Strukturanalyse T1 - Modern techniques of CT based structure analysis JF - tm - Technisches Messen N2 - Durch den großflächigen Einsatz der Computertomographie (CT) in unterschiedlichen Industriebereichen steigen auch die Anforderungen an die quantitative Bildanalyse. Subjektive Bildwahrnehmung muss durch objektive Algorithmen ersetzt werden. In diesem Artikel stellt die Bundesanstalt für Materialforschung und -prüfung (BAM), die seit den 1980er Jahren an der Entwicklung der industriellen CT beteiligt ist, anhand ausgewählter Beispiele den aktuellen Stand ihrer Analysemethoden an verschiedenen Anwendungsbeispielen der CT vor. N2 - The increasing use of computed tomography (CT) in various industrial sectors requires more sophisticated techniques of quantitative image analysis. Subjective image perception needs to be replaced by objective algorithms. The German Federal Institute for Materials Research and Testing (BAM) has been involved in the development of industrial CT since the 1980s. This paper summarizes the current status of quantitative 3D image analysis techniques based on selected examples. KW - Computed tomography KW - Computertomographie KW - Röntgen-Refraktion KW - X-Ray refraction KW - Schadensanalyse KW - Damage analysis KW - Normung KW - standardization PY - 2020 DO - https://doi.org/10.1515/teme-2019-0125 SN - 0171-8096 SN - 2196-7113 VL - 87 IS - 2 SP - 81 EP - 91 PB - de Gruyter CY - Berlin AN - OPUS4-50337 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Stelzner, Ludwig A1 - Weise, Frank T1 - Non-destructive evaluation of the contribution of polymer-fiber orientation and distribution characteristics to concrete performance during fire N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion of polymer fibers in high density concrete can significantly mitigate fire damage due to the contribution of the fibers to increased permeability levels at high temperature. This allows vapor pressures caused by the evaporation of internal water during fire to escape from the material without causing significant spalling. Recent microscopic investigations have also shown that the addition of polypropylene (PP) fibers to high-density HPC with a high amount of fine-aggregate has a considerable influence on the nature and character of crack formation due to autogenous shrinkage. Initial cracks, which originate from the fiber beds, undergo further expansion and propagation when concrete is subjected to thermal exposure in excess of 170 °C. It is thus of interest to determine whether the resulting cracks join the adjacent fiber beds and therefore contribute to a significant increase in the permeability of the concrete, which is directly correlated to lower pore pressures and reduced spalling during fire. In this study, X-ray Computed Tomography (CT) was applied to provide a clear demonstration of the interaction between polymer fibers and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fiber types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components, such as polymer fibers, cracks, aggregates and cement matrix, in each image. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fiber characteristics within the concrete. This paper will provide a description of the distribution and orientation characteristics of the polymer fibers within each sample obtained through the CT-based analysis. Using these results, the impact of fiber distribution and orientation characteristics on actual cracking geometries have been measured and visualized. This paper will also provide recommendations for further optimization of the selected materials and propose improved methods for future CT-based analysis techniques. T2 - European Mechanics Society Colloquium 582: Short Fibre Reinforced Cementitious Composites and Ceramics CY - Tallinn, Estonia DA - 20.03.2017 KW - High-performance concrete KW - X-ray computed tomography KW - Polypropylene fibers KW - Fire KW - Orientation PY - 2017 AN - OPUS4-39649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oesch, Tyler A1 - Stenzel, Ludwig A1 - Weise, Frank T1 - Non-destructive Evaluation of the Contribution of Polymer-Fibre Orientation and Distribution Characteristics to Concrete Performance during Fire T2 - Short Fibre Reinforced Cementitious Composites and Ceramics N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion ofpolymer fibres in high density concrete can significantly mitigate this fire damage. The exact mechanisms causing this increased spalling resistance are not yet fully understood, but it is thought that the fibres facilitate moisture transport during fire exposure, which in turn contributes to relief of internal stresses in the spalling-susceptible region. In this study, X-ray Computed Tomography (CT) was applied to observe the interaction between polymer fibres and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fibre types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fibre characteristics within the concrete. The results demonstrated that the orientation of both fibres and cracks in polymerfibre reinforced concrete tend to be anisotropic. The results also indicated that crack geometry characteristics may be correlated with fibre orientation, with cracks tending to run parallel to fibre beds. Clear quantitative relationships were also observed between heating and increasing cracking levels, expressed in terms of both crack surface area and crack volume. KW - Concrete KW - Fire resistance KW - Polymer fibre PY - 2019 SN - 978-3-030-00867-3 DO - https://doi.org/10.1007/978-3-030-00868-0_4 VL - 95 SP - 51 EP - 73 PB - Springer Nature Switzerland AG CY - Zürich AN - OPUS4-51077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oesch, Tyler A1 - Stelzner, Ludwig A1 - Weise, Frank ED - Herrmann, H. ED - Schnell, J. T1 - Non-destructive evaluation of the contribution of polymer-fibre orientation and distribution characteristics to concrete performance during fire T2 - Short Fibre Reinforced Cementitious Composites and Ceramics N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion of polymer fibres in high density concrete can significantly mitigate this fire damage. The exact mechanisms causing this increased spalling resistance are not yet fully under-stood, but it is thought that the fibres facilitate moisture transport during fire exposure, which in turn contributes to relief of internal stresses in the spalling-susceptible region. In this study, X-ray Computed Tomography (CT) was applied to observe the interaction between polymer fibres and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fibre types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fibre characteristics within the concrete. The results demonstrated that the orientation of both fibres and cracks in polymer-fibre reinforced concrete tend to be anisotropic. The results also indicated that crack geometry characteristics may be correlated with fibre orientation, with cracks tending to run parallel to fibre beds. Clear quantitative relationships were also observed between heating and increasing cracking levels, expressed in terms of both crack surface area and crack volume. KW - X-ray Computed Tomography (CT) KW - Polypropylene Fibres KW - Fire Performance KW - Fibre-Reinforced Concrete (FRC) KW - Fibre Orientation Analysis PY - 2019 SN - 978-3-030-00868-0 DO - https://doi.org/10.1007/978-3-030-00868-0 SP - 51 EP - 73 PB - Springer Nature Switzerland AG AN - OPUS4-47206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Sturm, Patrick A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten A1 - Bartholmai, Matthias A1 - Kowarik, Stefan T1 - Proposed Project SealWasteSafe: Materials Technology, Quality Assurance and Monitoring Techniques for Safe Sealing Systems in Underground Repositories N2 - The proposed BAM project SealWasteSafe will advance the state of the art for the construction and monitoring of safe sealing systems for underground repositories of radioactive or toxic waste. During this project, a novel salt concrete exhibiting neither significant cracking nor shrinkage will be optimized for use in the sealing systems. The composition of this material will be based on alkali-activated materials, which are characterized by particularly small thermal deformations during the hardening reaction. Quality assurance and continuous monitoring systems developed during this project will be demonstrated not only for high reliability, but also for resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. A variety of sensors will be used in combination with wireless Radio Frequency Identification (RFID) technology to record moisture, temperature, and, if necessary, corrosion activity within the sealing system. Distributed Fibre Optic Sensor (FOS) technology will also be used for strain, temperature, and moisture content measurement. Ultrasound-based measuring methods will be utilized for the detection of cracks and delaminations. Additionally, digital image correlation and acoustic emission analysis will be used for deformation measurements and crack detection. A novel borehole probe and advanced ultrasound imaging techniques will be further developed to track cracks and delaminations within the host rock in 3D. The surface-based Large Aperture Ultrasound System (LAUS) will also be utilized to detect cracks and delaminations deep below the exterior surface of the sealing system. Although the focus of this project will be on the host rock salt, the resulting technologies will be intentionally developed in a way that facilitates their adaptation to other host rocks. T2 - 2nd International Conference on Monitoring in Geological Disposal of Radioactive Waste CY - Paris, France DA - 09.04.2019 KW - SealWasteSafe KW - Radioactive Waste Disposal KW - Underground Repositories KW - Alkali-Activated Material KW - Monitoring PY - 2019 AN - OPUS4-47776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten A1 - Effner, Ute T1 - Quality assurance of engineered barriers in underground waste disposals N2 - This poster provides an overview of ultrasonic investigations of an engineered test barrier at ERAM Morsleben, which were completed as part of contractual work with the Bundesgesellschaft für Endlagerung mbH (BGE). This includes both experiments with the Large Aperture Ultrasound System (LAUS) and the ultrasonic borehole array. Also included in the poster is a description of the planned BAM thematic project “SealWasteSafe”. In particular, the proposed geopolymer materials are described and future research requirements are detailed. T2 - 1. Statuskonferenz Endlagerung von hochradioaktiven Abfällen CY - Berlin, Germany DA - 08.11.2018 KW - Large Aperture Ultrasound System (LAUS) KW - Ultrasonic Borehole Array KW - SealWasteSafe KW - Geopolymer KW - Crack Detection PY - 2018 AN - OPUS4-47021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Meinel, Dietmar A1 - Gollwitzer, Christian T1 - Quantitative in-situ analysis of water transport in concrete completed using X-ray computed tomography JF - Transport in Porous Media N2 - This paper describes a novel methodology for quantitative in-situ moisture measurement without tracking agents using X-ray computed tomography (XCT). The high levels of grey-scale precision required for the measurement of moisture without tracking agents resulted in the need for an additional image calibration procedure to correct for water-related X-ray scattering and for equipment-variability related artefacts arising during in-situ testing. This calibration procedure was developed on the basis of existing principles of XCT image cor-rection. Resulting images of moisture distribution exhibit a high level of agreement with expected material behaviour. This research demonstrated that XCT can be successfully used to measure both moisture-front movement over time and changes in 3D moisture distribution within samples. This approach to moisture measurement lays the groundwork for the planned future investigation of the interaction between cracking induced by varying chemical and mechanical processes and water transport in concrete. KW - X-ray computed tomography (XCT) KW - In-situ testing KW - Water transport KW - Quantitative moisture measurement KW - Concrete PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474395 DO - https://doi.org/10.1007/s11242-018-1197-9 SN - 1573-1634 VL - 127 IS - 2 SP - 371 EP - 389 PB - Springer Netherlands AN - OPUS4-47439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Landis, E. A1 - Hassfras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - Relating ultrasonic signals to concrete microstructure using X-ray computed tomography JF - Construction and Building Materials N2 - With a goal to improve our understanding of the relationships between microstructural features and ultrasonic signal behavior, concrete specimens of varying water-to-cement ratio were imaged using X-ray computed tomography (CT), and subsequently subjected to ultrasonic testing. From the CT scans, measurements were made of cement paste density and number of interfaces. Ultrasonic signals produced using a through-transmission configuration were analyzed and fit to a diffusion model to separate absorption from scattering attenuation. The results showed that at the frequencies tested, ultrasonic dissipation rate correlated weakly with paste density, while diffusivity correlated well with number of interfaces, but only if entrained air is considered separately. Cement paste density was found to be very well predicted by diffusivity, leading to a clear power-law relationship between diffusivity and compressive strength. KW - Concrete KW - Ultrasound KW - Strength KW - CT PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.121124 SN - 0950-0618 VL - 268 SP - Paper 121124, 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-52073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - Röntgencomputertomographie für betonspezifische Anwendungen: Verwendung von In-situ und Ex-situ Prüfverfahren, um wesentliche Einblicke in das Betonverhalten zu gewinnen N2 - Beton ist das meistbenutzte Baumaterial der Welt. Sein Herstellungsprozess ist auch für schätzungsweise 5% der globalen Kohlenstoffemissionen verantwortlich. Daher können selbst kleine Verbesserungen in der Festigkeit oder Haltbarkeit zu einer erheblichen Verringerung der Bau- und Wartungskosten, der Umweltschäden und der Gefahr für die Menschen führen. Um das grundlegende Verhalten dieses Materials zu verstehen, ist es notwendig, seine Leistung während thermischer, chemischer und mechanischer Prozesse (d. h. in-situ) zu beobachten. Es wird eine zerstörungsfreie Messmethode benötigt, die in der Lage ist, nicht nur Änderungen des Materials wie Feuchtigkeitsumverteilung, Korrosion und Dehnung zu messen, sondern auch die innere Struktur des Materials im Dreidimensionalen aufzulösen, so dass Versagensmechanismen und Transportphänomene direkt auf bestimmte Eigenschaften der heterogenen Materialstruktur bezogen werden können (wie z.B. die Übergangszone zwischen Gesteinskörnungen und Zementstein oder die Orientierung von eingebetteten Fasern). Die Röntgencomputertomographie (CT) hat sich als ideal für solche Zwecke erwiesen. Neuere Forschungen an der BAM werden vorgetragen, die die Fähigkeiten der CT zur Identifizierung quantitativer Materialeigenschaften wie Faserorientierung, Rissoberfläche, Korrosionsverteilung und Änderungen des volumetrischen Feuchtigkeitsanteils demonstrieren. Der Nutzen dieser leistungsstarken Analysewerkzeuge wird dann anhand der Ergebnisse einer Reihe von Ex-situ und In-situ Testprogrammen für Bedingungen wie mechanische Belastung, Wassertransport und thermische Exposition gezeigt. Speziell entwickelte In-situ Testmaschinen für diese verschiedenen Testprogramme werden ebenfalls beschrieben. Die von der CT gelieferten quantitativen Charakterisierungsinformationen haben sich als ideale Grundlage für die Kalibrierung bzw. Validierung von numerischen Simulationen erwiesen. CT ist auch wesentlich für die Beantwortung von vielen anwendungsspezifischen Fragen, u.a. wie sich verschiedene Gießverfahren auf die Materialleistung auswirken, welche Mineralien sich als Zuschlagstoffe anfällig für langfristige chemische und hydraulische Prozesse erweisen und wie Polymerfasern den Druckaufbau in Beton während der thermischen Belastung beeinflussen. T2 - Abteilungsseminar 8. Zerstörungsfreie Prüfung CY - Berlin, Germany DA - 12.11.2018 KW - Feuchtigkeitsmessung KW - Röntgencomputertomographie (CT) KW - In-situ Prüfverfahren KW - Faserverstärkter Beton (FRC) KW - Digitale Bildkorrelation (DVC) PY - 2018 AN - OPUS4-46912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buljak, V. A1 - Oesch, Tyler A1 - Bruno, Giovanni T1 - Simulating fiber-reinforced concrete mechanical performance using CT-based fiber orientation data JF - Materials N2 - The main hindrance to realistic models of fiber-reinforced concrete (FRC) is the local materials property variation, which does not yet reliably allow simulations at the structural level. The idea presented in this paper makes use of an existing constitutive model, but resolves the problem of localized material variation through X-ray computed tomography (CT)-based pre-processing. First, a three-point bending test of a notched beam is considered, where pre-test fiber orientations are measured using CT. A numerical model is then built with the zone subjected to progressive damage, modeled using an orthotropic damage model. To each of the finite elements within this zone, a local coordinate system is assigned, with its longitudinal direction defined by local fiber orientations. Second, the parameters of the constitutive damage model are determined through inverse analysis using load-displacement data obtained from the test. These parameters are considered to clearly explain the material behavior for any arbitrary external action and fiber orientation, for the same geometrical properties and volumetric ratio of fibers. Third, the effectiveness of the resulting model is demonstrated using a second, “control” experiment. The results of the “control” experiment analyzed in this research compare well with the model results. The ultimate strength was predicted with an error of about 6%, while the work-of-load was predicted within 4%. It demonstrates the potential of this method for accurately predicting the mechanical performance of FRC components. KW - Fiber-reinforced concrete KW - X-ray computed tomography (CT) KW - Anisotropic fiber orientation KW - Inverse analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474728 DO - https://doi.org/10.3390/ma12050717 SN - 1996-1944 VL - 12 IS - 5 SP - 717, 1 EP - 16 PB - MDPI AN - OPUS4-47472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Weise, Frank T1 - Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR JF - Construction and Building Materials N2 - The thermohydraulic damage mechanism is one of the primary causes for explosive spalling of highperformance concrete. This paper presents the spatially- and temporally-resolved analysis of the thermally-induced moisture transport and reconfiguration processes by means of X-ray-CT and 1HNMR. Thermal testing results for a high-performance concrete, which is sensitive to explosive spalling and which was prepared with and without added polypropylene fibres, are presented in this paper. These results indicate that the addition of fibres leads to a faster and deeper migration of the drying front and, thus, to a lower likelihood of vapour-pressure induced explosive spalling. KW - Explosive spalling KW - Thermally-induced moisture transport KW - X-ray-CT KW - 1H-NMR KW - High-performance concrete PY - 2019 DO - https://doi.org/10.1016/j.conbuildmat.2019.07.065 SN - 0950-0618 VL - 224 SP - 600 EP - 609 PB - Elsevier Ltd. AN - OPUS4-48727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating T2 - Proceedings of the 6th International Workshop on Concrete Spalling due to Fire Exposure N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 UR - https://firespallingworkshop2019.group.shef.ac.uk/wp-content/uploads/2019/09/Fire-Spalling-Workshop_Proceedings.pdf SN - 978-1-5272-4135-0 SP - 181 EP - 190 CY - Sheffield AN - OPUS4-49161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Powierza, Bartosz A1 - Stelzner, Ludwig A1 - Oesch, Tyler A1 - Gollwitzer, Christian A1 - Weise, Frank A1 - Bruno, Giovanni T1 - Water migration in one-side heated concrete: 4D in-situ CT monitoring of the moisture-clog-effect JF - Journal of Nondestructive Evaluation N2 - Explosive spalling due to fire exposure in concrete structures can lead severe damage and, in the worst case, to premature component failure. For this reason, an in situ investigation of water Migration in concrete due to surface heating was undertaken. During these experiments, a miniaturized concrete specimen within a confining and insulating double-hull was subjected to surface heating during simultaneous X-ray computed tomography (CT) scanning. Through the use of subtraction-based Image analysis techniques, it was possible to observe and quantify not only drying within areas of the concrete matrix close to the heated surface, but also the migration of moisture to both pore and matrix regions deeper within the specimen. It was also discovered that the correction of CT images for specimen deformation using DVC and variable detector performance using calibrated image filters significantly improved the quality of the results. This clearly demonstrates the potential of X-ray CT for evaluation of other rapid-density-change phenomena in concrete and other building materials. T2 - 8th Conference on Industrial Computed Tomography (iCT 2018) CY - Wels, Austria DA - 06.02.2018 KW - In-Situ X-ray CT KW - Digital Volume Correlation KW - Heated concrete KW - Water migration KW - Fire PY - 2019 DO - https://doi.org/10.1007/s10921-018-0552-7 SN - 1573-4862 SN - 0195-9298 VL - 38 IS - 1 SP - 15, 1 EP - 11 PB - Springer US CY - New York / Heidelberg AN - OPUS4-47147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - X-Ray Computed Tomography as a Tool for Calibration and Validation of Numerical Simulations N2 - This presentation includes the results of a number of case studies of concrete properties using computed tomography (CT) in combination with various in-situ testing techniques, including those of mechanical loading, water transport, and fire. The results of these case studies demonstrate the potential of CT as an approach for obtaining unique, quantitative data about the structure of materials. This data can serve as the basis for calibrating and validating a new generation of numerical models that have a stronger foundation in micromechanical theory. This will contribute to the development of more accurate and versatile simulation approaches for concrete and other building materials. T2 - International Workshop: Micromechanics of Rocks and Concrete CY - Berlin, Germany DA - 21.07.2017 KW - Computed tomography (CT) KW - In-situ testing KW - Case studies PY - 2017 AN - OPUS4-41104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -