TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mellios, N. A1 - Oesch, Tyler A1 - Spyridis, P. T1 - Finite element modelling of UHPC under pulsating load using X-ray computed tomography based fiber distributions N2 - The benefits of including fibers in ultra-high performance concrete (UHPC) are attributed to their good bond with the matrix and, hence, an optimal utilization of their properties. At the same time, though, fiber reinforcement may contribute to anisotropy in the composite material and induce weak areas. The influence of the fibers’ orientation on the material properties is a matter of current scientific discourse and it is known to play a vital role in structural design. In the case studies presented herein, mechanical laboratory tests using pulsating load regimes on UHPC with a strength of more than 200 MPa were simulated by use of finite element models. The orientations of the fibers were measured for each test sample prior to failure using an X-ray computed tomography (CT) scanner, and these orientations are explicitly implemented into the model. The paper discusses the methodology of merging data retrieved by CT image processing and state-of-the-art FE simulation techniques Moreover, the CT scanning was carried out throughout the testing procedure, which further enables the comparison of the mechanical tests and the FE models in terms of damage propagation and failure patterns. The results indicate that the overall fiber configuration and behavior of the samples can be realistically modelled and validated by the proposed CT-FE coupling, which can enhance the structural analysis and design process of elements produced with steel fiber reinforced and UHPC materials. KW - Ultra-high performance concrete KW - Steel fiber reinforced concrete KW - Fiber orientation KW - X-ray computed tomography KW - Non-linear finite element modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542105 DO - https://doi.org/10.1617/s11527-021-01833-4 SN - 1871-6873 VL - 55 IS - 1 SP - 1 EP - 20 PB - Springer CY - Dordrecht AN - OPUS4-54210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Landis, E. A1 - Kuchma, D. T1 - Conventional concrete and UHPC performance-damage relationships identified using computed tomography N2 - To make significant advances in concrete engineering, it will be necessary to understand the behavior of cementitious materials at the microscale. To achieve this goal, the nature of damage initiation and growth needs to be understood at very small scales. This Research program sought to increase that understanding through the collection of microscale data using X-ray computed tomography (CT). The tensile and compression behavior of both ultra-high performance concrete (UHPC) and conventional concrete were investigated as a part of this program. Relationships were identified between mechanical performance parameters, such as stiffness degradation and work of load, and cracking parameters, such as crack volume and crack surface area, that could be quantified mathematically and implemented into future finite element analysis (FEA) models. The results of this Research program have the potential to improve the accuracy and resiliency of numerical models and to provide insight to the materials engineering community concerning the optimal use of UHPC. KW - Computed tomography (CT) KW - Ultra-high performance concrete (UHPC) KW - Double punch test (DPT) KW - Quantitative damage measurement KW - Damage variable PY - 2016 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0001168 SN - 0733-9399 VL - 142 IS - 12 SP - 04016101-1 EP - 04016101-10 PB - American Society of Civil Engineers CY - Reston, VA, USA AN - OPUS4-38345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - Analyse von Schädigungsprozessen in Beton - Was leistet die CT? Teil3: Fallstudien in Zement- und Betonforschungsanwendungen N2 - Für die Festigkeit von faserverstärkten Betonen spielt die beim Gießvorgang hervorgerufene Faseranisotropie eine wichtige Rolle. In den computertomographischen Aufnahmen lässt sich die anhand der Eigenvektoren der Hessianmatrix an der Faser ermittelte räumliche Orientierung der Fasern berechnen und im sphärischen Koordinatensystem darstellen. Mit für die CT-Anlagen ausgelegten Prüfeinrichtungen ist es möglich mechanische Belastungen, Wärmeeinwirkung und Feuchtetransport in Betonproben während einer CT-Messung durchzuführen. Die Analyse dieser In-situ Messungen erfordert zum Teil speziell auf die Erfordernisse angepasste Auswerteverfahren. Dazu zählen die automatische Rissdetektion oder die Korrektur der Streustrahlung bei der Wasseraufnahme. T2 - Summer School im Rahmen des DFG Schwerpunktprogramms 2020 "Zyklische Schädigungsprozesse in Hochleistungsbetonen im Experimental-Virtual-Lab" CY - Hotel Park Soltau, Soltau, Germany DA - 25.06.2018 KW - Computertomographie KW - Faserorientierungsanalyse KW - In-situ CT KW - Risserkennung KW - Schadenscharakterisierung PY - 2018 AN - OPUS4-45434 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Landis, E. A1 - Kuchma, D. ED - Lura, P. T1 - A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT N2 - Fiber-reinforced concretes (FRCs) offer significant improvements in tensile strength and durability compared to most other concrete mixes. However, for safe and efficient use of FRC in large structures, anisotropy of fiber orientation needs to be understood and properly controlled. In this project, both cored samples extracted from a FRC slab and FRC samples cast individually in molds were assessed using X-ray computed tomography (CT) and measurements of fiber orientation were extracted from the resulting CT images. These results showed that fibers within the slab were highly anisotropic in orientation while fibers in individually cast samples showed a much more heterogeneous distribution of orientations. This indicates that fiber orientation is highly dependent on the casting process and suggests that FRC can only be safely and efficiently utilized if anisotropic fiber orientation is properly accounted for during design and optimized casting methods are used during construction. KW - Anisotropic fiber orientation KW - Computed tomography KW - Fiber-reinforced concrete KW - UHPC KW - Hessian analysis KW - Order parameter PY - 2018 UR - https://rdcu.be/OR6k DO - https://doi.org/10.1617/s11527-018-1198-8 SN - 1359-5997 SN - 1871-6873 N1 - xxx VL - 51 IS - 3 SP - Article 73, 1 EP - 13 PB - Springer Netherlands CY - Dordrecht, Niederlande AN - OPUS4-45045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Bruno, Giovanni T1 - Detection and Quantification of Cracking in Concrete Aggregate through Virtual Data Fusion of X-ray Computed Tomography Images N2 - In this work, which is part of a larger research program, a framework called “virtual data fusion“ was developed to provide an automated and consistent crack detection method that allows for the cross-comparison of results from large quantities of X-ray Computed Tomography (CT) data. A partial implementation of this method in a custom program was developed for use in research focused on crack quantification in Alkali-Silica Reaction (ASR)-sensitive concrete aggregates. During the CT image processing, a series of image analyses tailored for detecting specific, individual crack-like characteristics were completed. The results of these analyses were then “fused” in order to identify crack-like objects within the images with much higher accuracy than that yielded by any individual image analysis procedure. The results of this strategy demonstrated the success of the program in effectively identifying crack-like structures and quantifying characteristics, such as surface area and volume. The results demonstrated that the source of aggregate has a very significant impact on the amount of internal cracking, even when the mineralogical characteristics remain very similar. River gravels, for instance, were found to contain significantly higher levels of internal cracking than quarried stone aggregates of the same mineralogical type. KW - X-ray Computed Tomography (CT) KW - Alkali-Silica Reaction (ASR) KW - Crack Detection KW - Damage Quantification KW - ASR-Sensitive Aggregate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512170 DO - https://doi.org/10.3390/ma13183921 VL - 13 IS - 18 SP - Paper 3921 PB - MDPI CY - Basel, Switzerland AN - OPUS4-51217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Oesch, Tyler A1 - Stenzel, Ludwig A1 - Weise, Frank T1 - Non-destructive Evaluation of the Contribution of Polymer-Fibre Orientation and Distribution Characteristics to Concrete Performance during Fire N2 - Although concrete itself is not a combustible material, concrete mixtures with high density, such has high-performance concretes (HPCs), are susceptible to significant damage during fires due to explosive spalling. Past research has shown that the inclusion ofpolymer fibres in high density concrete can significantly mitigate this fire damage. The exact mechanisms causing this increased spalling resistance are not yet fully understood, but it is thought that the fibres facilitate moisture transport during fire exposure, which in turn contributes to relief of internal stresses in the spalling-susceptible region. In this study, X-ray Computed Tomography (CT) was applied to observe the interaction between polymer fibres and cracking during thermal exposure. For this purpose, two concrete samples containing different polymer fibre types were subjected to incremental application of a defined thermal exposure. CT images were acquired before and after each thermal exposure and powerful image processing tools were used to segment the various material components. This enabled a detailed analysis of crack formation and propagation as well as the visualization and quantification of polymer fibre characteristics within the concrete. The results demonstrated that the orientation of both fibres and cracks in polymerfibre reinforced concrete tend to be anisotropic. The results also indicated that crack geometry characteristics may be correlated with fibre orientation, with cracks tending to run parallel to fibre beds. Clear quantitative relationships were also observed between heating and increasing cracking levels, expressed in terms of both crack surface area and crack volume. KW - Concrete KW - Fire resistance KW - Polymer fibre PY - 2019 SN - 978-3-030-00867-3 DO - https://doi.org/10.1007/978-3-030-00868-0_4 VL - 95 SP - 51 EP - 73 PB - Springer Nature Switzerland AG CY - Zürich AN - OPUS4-51077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on Industrial Computed Tomography CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing Bar KW - Computed Tomography KW - In-Situ KW - High-Performance Concrete PY - 2016 AN - OPUS4-35521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on industrial computed tomography (iCT) CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing bar KW - Computed tomography KW - In-situ KW - High-performance concrete PY - 2016 UR - http://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id83.pdf SN - 1435-4934 VL - 21 IS - 2 SP - ID 18788, 1 EP - 8 AN - OPUS4-35436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 UR - https://firespallingworkshop2019.group.shef.ac.uk/wp-content/uploads/2019/09/Fire-Spalling-Workshop_Proceedings.pdf SN - 978-1-5272-4135-0 SP - 181 EP - 190 CY - Sheffield AN - OPUS4-49161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -