TY - CONF A1 - Gawlitza, Kornelia A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Novel sensor for long-term monitoring of ammonia in gas phase N2 - Because ammonia and its reaction products can cause considerable damage to human health and ecosystems, there is a need for reliably operating and reversibly interacting sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for in-the-field measurements. Herein, the development of a sensor material for gaseous ammonia in the lower ppm to ppb range using optical fluorescence as transduction mechanism is presented. A fluorescent dye, which shows reversible fluorescence enhancement in the presence of ammonia is incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. The sensor material is integrated into a prototype of a miniaturized sensor device, facilitating long-term operation. To calibrate the optical sensor system a gas standard generator, producing standard gas mixtures, is used, leading to a sensitivity down to lower ppm concentrations of ammonia. T2 - 13. Dresdner Sensor-Symposium 2017 CY - Dresden, Germany DA - 04.12.2017 KW - Ammonia gas sensor KW - Fluorescence KW - Air quality monitoring KW - Standard gas generator KW - Miniaturized sensor device PY - 2017 U6 - https://doi.org/10.5162/13dss2017/P4.02 SP - P4.02, 272 EP - 276 AN - OPUS4-43352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Noske, Reinhard A1 - Feller, Viktor A1 - Bartholmai, Matthias ED - Vonau, Winfried ED - Cruvinel, P. ED - Chilibon, I. ED - Carvalho, V. ED - Sophocleous, M. T1 - Gas detection using a multi-sensor device with pump control and VOC sensor N2 - This paper deals with the development and investi-gation of a volatile organic compound (VOC) system for differ-ent scenarios. The integrated multi-sensor unit can detect dif-ferent gases through the integrated 3-fold VOC sensor, where-by a continuous measurement takes place. The system-integrated flow control, with pump and flow sensor, allows the gas molecules to be transported directly to the VOC sensor. The entire measurement is permanently stored on an integrat-ed Secure Digital (SD) card. If the previously determined limit range is exceeded, an alarm is generated. Due to the combina-tion of different components, numerous applications are possi-ble. The system is the first step or a tool towards further devel-opments in the field of gas sensors and is primarily used for the validation of chemically based gas sensors, and it is still largely extended by application-specific influences. T2 - Sensordevices 2017 - The Eighth International Conference on Sensor Device Technologies and Applications CY - Rome, Italy DA - 2017-09-10 KW - Gas detection KW - VOC KW - Pump control KW - Multi sensor device PY - 2017 SN - 978-1-61208-581-4 SP - 1 EP - 4 CY - Rome, Italy AN - OPUS4-42097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -