TY - CONF A1 - Noordmann, J. T1 - Gravimetric preparation and characterization of a primary reference solution of molybdenum N2 - Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes to the purity of the solid materials they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Unit. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project called SIB09 Primary standards for challenging elements, a reference solution of molybdenum was prepared directly from the respective metal with a relative expanded uncertainty associated with the mass fraction of Urel(w) < 0.05 %. A highly accurate and precise ICP OES and MC-ICP-MS method was developed to assist with the preparation and as a dissemination tool. T2 - ANACON CY - Graz, Austria DA - 23.03.2015 KW - Metrology KW - Primary standards KW - Mo PY - 2015 AN - OPUS4-38038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Kaltenbach, A. A1 - Rienitz, O. T1 - Preparation and characterization of primary magnesium mixtures for the ab initio calibration of absolute magnesium isotope ratio measurements N2 - We report an appropriate preparation of binary isotope calibration mixtures of the three stable isotopes of magnesium to be used in the ab initio calibration of multicollector mass spectrometers (ICPMS and TIMS). For each of the three possible combinations of binary mixtures ("24Mg" + "25Mg", "24Mg" + "26Mg", and "25Mg" + "26Mg"), three individual setups have been prepared under gravimetric control, each of them with an isotope ratio close to unity, and a total magnesium mass fraction close to 20 mg kg-1. The preparation was designed to occur via an intermediate dilution of a parent solution of a highly purified specimen of the isotopically enriched magnesium materials. For the application as calibration mixtures, a complete uncertainty budget was set up, and is presented and discussed in detail, including the aspects that went into the design of the dilution and mixing approach to minimize uncertainty. The principle parameters for the purpose of the later calibration of the mass spectrometers are the absolute masses of isotopically enriched magnesium materials in the primary calibration mixtures. For the first time relative expanded uncertainties U (k = 2) for these masses of ≤0.005% could be achieved for all mixtures. KW - Atomic weight KW - Magnesium KW - Isotope mixture KW - Purity PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-352564 DO - https://doi.org/10.1039/c5ja00284b SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. N1 - Corrigendum: Journal of analytical atomic spectrometry 34 (2019) 2340 VL - 31 IS - 1 SP - 179 EP - 196 PB - Royal Society of Chemistry CY - London AN - OPUS4-35256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370931 DO - https://doi.org/10.1039/C6JA00013D SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 DO - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -