TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification Report for the Isotopic Reference Materials ERM-AE142 and ERM-EB400 N2 - Lead (Pb) isotope amount ratios are commonly used in applications ranging from archaeology and forensic sciences to terrestrial and extra-terrestrial geochemistry. Despite their utility and frequency of use, only three certified isotope amount ratio reference materials are currently available for Pb: NIST SRMs 981, 982 and 983. Because SRM 981 has a natural Pb isotopic composition, it is mainly used for correcting instrumental mass discrimination or fractionation. This means that, at present, there are no other certified isotope reference materials with natural Pb isotopic composition that could be used for validating or verifying an analytical procedure involving the measurement of Pb isotope amount ratios. To fill this gap, two new reference materials, both certified for their Pb isotopic composition, have been produced together with a complete uncertainty assessment. These new reference materials offer SI traceability and an independent means of validating or verifying analytical procedures used to produce Pb isotope amount ratio measurements. ERM-EB400 is a bronze material containing a nominal Pb mass fraction of 45 mg/kg. ERM-AE142 is a high purity solution of Pb with a nominal mass fraction of 100 mg/kg. Both materials have been specifically produced to assist analysts in verifying or validating their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). Details on the certification of these isotope reference materials are provided in this report. KW - Lead isotopic composition KW - Isotope ratio KW - Reference material KW - Mass spectrometry PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392060 SP - 1 EP - 16 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights JF - Journal of Analytical Atomic Spectrometry N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370931 DO - https://doi.org/10.1039/C6JA00013D SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Kaltenbach, A. A1 - Rienitz, O. T1 - Preparation and characterization of primary magnesium mixtures for the ab initio calibration of absolute magnesium isotope ratio measurements JF - Journal of analytical atomic spectrometry N2 - We report an appropriate preparation of binary isotope calibration mixtures of the three stable isotopes of magnesium to be used in the ab initio calibration of multicollector mass spectrometers (ICPMS and TIMS). For each of the three possible combinations of binary mixtures ("24Mg" + "25Mg", "24Mg" + "26Mg", and "25Mg" + "26Mg"), three individual setups have been prepared under gravimetric control, each of them with an isotope ratio close to unity, and a total magnesium mass fraction close to 20 mg kg-1. The preparation was designed to occur via an intermediate dilution of a parent solution of a highly purified specimen of the isotopically enriched magnesium materials. For the application as calibration mixtures, a complete uncertainty budget was set up, and is presented and discussed in detail, including the aspects that went into the design of the dilution and mixing approach to minimize uncertainty. The principle parameters for the purpose of the later calibration of the mass spectrometers are the absolute masses of isotopically enriched magnesium materials in the primary calibration mixtures. For the first time relative expanded uncertainties U (k = 2) for these masses of ≤0.005% could be achieved for all mixtures. KW - Atomic weight KW - Magnesium KW - Isotope mixture KW - Purity PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-352564 DO - https://doi.org/10.1039/c5ja00284b SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. N1 - Corrigendum: Journal of analytical atomic spectrometry 34 (2019) 2340 VL - 31 IS - 1 SP - 179 EP - 196 PB - Royal Society of Chemistry CY - London AN - OPUS4-35256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -