TY - JOUR A1 - Can, S. Z. A1 - Engin, B. A. A1 - İşleyen, A. A1 - Jotanovic, A. A1 - Acosta, O. A1 - Prina, P. A1 - Schvartz, M. A1 - Savić, M. A1 - Stojanović, M. A1 - Ahumada, D. A. A1 - Abella, J. P. A1 - Näykki, T. A1 - Saro-Aho, T. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. A1 - Pape, C. A1 - Towara, J. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Ketrin, R. A1 - Mardika, E. A1 - Komalasari, I. A1 - Elishian, C. A1 - Naujalis, E. A1 - Knašienė, B. A1 - Uribe, C. A1 - Carrasco, E. A1 - Zoń, A. A1 - Warzywoda, B. A1 - Stakheev, A. A1 - Dobrovolskiy, V. A1 - Stolboushkina, T. A1 - Glinkova, A. A1 - Sobina, E. A1 - Tabatchikova, T. A1 - Gažević, L. A1 - Paunovic, M. A1 - Jaćimović, R. A1 - Zuliani, T. A1 - Zambra, R. P. A1 - Napoli, R. T1 - Determination of elements in river water N2 - The need for quality assessment of anthropogenic impact on environmental pollution is increasing due to discharge from various industries, the use of chemicals in agriculture and the consumption of fossil fuels. Diminishing resources such as natural waters used for the cultivation of agricultural products, plant and animal habitats are under severe pollution pressure and are at constant risk. Several parameters, such as Pb, Cd, Ni, Hg were listed by Water Framework Directive in Directive(2008/105/EC) in the priority substances. Cadmium and Hg were identified as priority hazardous substances whereas As is an important contaminant for its potential toxicological and carcinogenic effects. An inter-comparison study is organised in EURAMET TC-MC in order to demonstrate the capability participants for measuring five elements in river water. The participants carried out measurements for analytes: Pb, Cd, Ni and As as mandatory elements, and Se as an optional one. Participants were asked to perform the measurements with respect to the protocol provided. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Metrology KW - Traceability KW - Toxic elements KW - River water PY - 2023 U6 - https://doi.org/10.1088/0026-1394/60/1A/08001 VL - 60 IS - 1a SP - 1 EP - 40 PB - BIPM & IOP Publishing Ltd AN - OPUS4-56786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Mieller, Björn A1 - Noordmann, J. A1 - Rienitz, O. A1 - Malinovskiy, D. T1 - Characterization of a series of absolute isotope reference materials for magnesium: ab initio calibration of the mass spectrometers, and determination of isotopic compositions and relative atomic weights N2 - For the first time, an ab initio calibration for absolute Mg isotope ratios was carried out, without making any a priori assumptions. All quantities influencing the calibration such as the purity of the enriched isotopes or liquid and solid densities were carefully analysed and their associated uncertainties were considered. A second unique aspect was the preparation of three sets of calibration solutions, which were applied to calibrate three multicollector ICPMS instruments by quantifying the correction factors for instrumental mass discrimination. Those fully calibrated mass spectrometers were then used to determine the absolute Mg isotope ratios in three candidate European Reference Materials (ERM)-AE143, -AE144 and -AE145, with ERM-AE143 becoming the new primary isotopic reference material for absolute isotope ratio and delta measurements. The isotope amount ratios of ERM-AE143 are n(25Mg)/n(24Mg) = 0.126590(20) mol/mol and n(26Mg)/n(24Mg) = 0.139362(43) mol/mol, with the resulting isotope amount fractions of x(24Mg) = 0.789920(46) mol/mol, x(25Mg) = 0.099996(14) mol/ mol and x(26Mg) = 0.110085(28) mol/mol and an atomic weight of Ar(Mg) = 24.305017(73); all uncertainties were stated for k = 2. This isotopic composition is identical within uncertainties to those stated on the NIST SRM 980 certificate. The candidate materials ERM-AE144 and -AE145 are isotopically lighter than ERM-AE143 by 1.6 ‰ and 1.3 ‰, respectively, concerning their n(26Mg)/n(24Mg) ratio. The relative combined standard uncertainties are ≤0.1 ‰ for the isotope ratio n(25Mg)/n(24Mg) and ≤0.15 ‰ for the isotope ratio n(26Mg)/ n(24Mg). In addition to characterizing the new isotopic reference materials, it was demonstrated that commonly used fractionation laws are invalid for correcting Mg isotope ratios in multicollector ICPMS as they result in a bias which is not covered by its associated uncertainty. Depending on their type, fractionation laws create a bias up to several per mil, with the exponential law showing the smallest bias between 0.1 ‰ and 0.7 ‰. KW - isotope reference material KW - absolute measurements KW - mass spectrometry KW - atomic weight KW - magnesium PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-370931 SN - 0267-9477 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. VL - 31 IS - 7 SP - 1440 EP - 1458 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-37093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Ren, T. A1 - Wang, J. A1 - Vocke Jr., R.D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. A1 - Näykki, T. A1 - Sara-Aho, T. A1 - Ari, B. A1 - Cankur, O. T1 - Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze KW - CCQM KW - Metrology KW - Isotope amount ratios KW - Lead PY - 2014 UR - http://www.bipm.org/utils/common/pdf/final_reports/QM/K98/CCQM-K98.pdf U6 - https://doi.org/10.1088/0026-1394/51/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A Tech. Suppl. SP - 08017-1 EP - 08017-47 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noordmann, J. A1 - Richter, Silke A1 - Kipphardt, Heinrich A1 - Kaltenbach, A. A1 - Görlitz, V. A1 - Rienitz, O. T1 - Gravimetric preparation and characterization of a primary reference solution of molybdenum N2 - Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes to the purity of the solid materials they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Unit. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project called SIB09 Primary standards for challenging elements, a reference solution of molybdenum was prepared directly from the respective metal with a relative expanded uncertainty associated with the mass fraction of Urel(w) < 0.05 %. A highly accurate and precise ICP OES and MC-ICP-MS method was developed to assist with the preparation and as a dissemination tool. T2 - ANACON CY - Graz, Austria DA - 23.03.2015 KW - Metrology KW - Primary standards KW - Mo PY - 2015 AN - OPUS4-38038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noordmann, J. A1 - Kaltenbach, A. A1 - Görlitz, V. A1 - Pape, C. A1 - Richter, Silke A1 - Kipphardt, Heinrich A1 - Kopp, G. A1 - Jährling, R. A1 - Rienitz, O. A1 - Güttler, B. T1 - Gravimetric preparation and characterization of a primary reference solution of molybdenum T2 - ANAKON 2015 CY - Graz, Austria DA - 2015-03-23 PY - 2015 AN - OPUS4-32866 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Meyer, Christian A1 - Koenig, Maren A1 - Becker, Dorit A1 - Noordmann, J. A1 - Rienitz, O. A1 - Mamakos, A. A1 - Riccobono, F. T1 - A new two-stage separation procedure for the IDMS based quantification of low Pd and Pt amounts in automotive exhaust emissions N2 - A two-step separation procedure for the quantification of Pd and Pt in automotive exhaust emissions using isotope dilution mass spectrometry was established using a combination of cation and anion exchange chemistry. AG 50W-X12 was used as cation exchange resin and DGA as weakly basic anion exchange resin. This procedure enabled the effective separation of Pd and Pt from the matrix and from interfering elements. Additionally Pd and Pt were collected in separate chromatographic fractions, which increased the precision of the isotope ratio determination by separate measurements using single collector sector field ICPMS. The analytical procedure was validated by analysing the synthetically prepared samples and the certified reference materials BCR-723 (road dust) and IAEA-450 (algae). For the SI-traceable results complete uncertainty budgets were calculated yielding relatively expanded uncertainties (k = 2) of ≈1% for analyte masses in the ng range. Procedure blanks of 55 pg Pd and 3 pg Pt were obtained. The detection limits were calculated as 12 pg for Pd and 7 pg for Pt. Additionally, Pd and Pt blank levels of different filter materials are presented as well as the first results for automotive exhaust particles collected on cellulose filters. KW - Palladium KW - Platinum KW - Automotive exhaust emissions KW - IDMS PY - 2015 U6 - https://doi.org/10.1039/c4ja00251b SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 2 SP - 479 EP - 486 PB - Royal Society of Chemistry CY - London AN - OPUS4-32539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Rosner, M. A1 - Kasemann, S. A. A1 - Kraft, R. A1 - Meixner, A. A1 - Noordmann, J. A1 - Rabb, S. A1 - Rienitz, O. A1 - Schuessler, J. A. A1 - Tatzel, Michael A1 - Vocke, R. D. T1 - Intercalibration of Mg isotope delta scales and realisation of SI traceability for Mg isotope amount ratios and isotope delta values N2 - The continuous improvement of analytical procedures using multi-collector technologies in ICP-mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERMAE143, ERM-AE144, ERM-AE145, IRMM-009 and NIST SRM 980 were cross-calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM-AE143 anchors all magnesium δ-scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM-AE144 and ERM-AE145, which are product and educt of a sublimation-condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg). KW - Delta scale KW - Traceability KW - Scale anchor KW - Absolute isotope ratio KW - Comparability KW - Triple isotope fractionation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511557 SN - 1751-908X VL - 44 IS - 3 SP - 439 EP - 457 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-51155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 U6 - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification report for the reference materials ERM-AE140 and ERM-AE141 - Pd and Pt single spikes certified for their Pd and Pt mass fraction and isotopic composition N2 - Isotope dilution mass spectrometry often is applied for the quantification of platinum group elements in environmental and geological samples. In most cases, however, certified spike solutions offering complete uncertainty statements and SI-traceability are missing. This report describes the production and certification of two isotope reference materials, ERM-AE140 and ERM-AE141, serving as calibrated spike solutions for IDMS based quantification of Pd and Pt, respectively. Both materials were produced by dissolving highly enriched isotopes 106Pd and 194Pt and determining the mass fraction of 106Pd and 194Pt in the final solution by reverse IDMS. Two independent back-spikes were produced for each material from high purity Pd and Pt. Characterization measurements were carried out by MC-ICPMS. For ERM-AE140 the certified mass fractions are w(106Pd) = 20.24(5) mg/kg and w(Pd) = 20.54(5) mg/kg. For ERM-AE141 the certified mass fractions are w(194Pt) = 18.18(11) mg/kg and w(Pt) = 19.90(12) mg/kg. These values are traceable to the International System of Units (SI) in the shortest possible way. KW - Palladium KW - Enriched isotope KW - Platinum KW - Spike KW - IDMS PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355833 SP - 1 EP - 25 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Kaltenbach, A. A1 - Rienitz, O. T1 - Preparation and characterization of primary magnesium mixtures for the ab initio calibration of absolute magnesium isotope ratio measurements N2 - We report an appropriate preparation of binary isotope calibration mixtures of the three stable isotopes of magnesium to be used in the ab initio calibration of multicollector mass spectrometers (ICPMS and TIMS). For each of the three possible combinations of binary mixtures ("24Mg" + "25Mg", "24Mg" + "26Mg", and "25Mg" + "26Mg"), three individual setups have been prepared under gravimetric control, each of them with an isotope ratio close to unity, and a total magnesium mass fraction close to 20 mg kg-1. The preparation was designed to occur via an intermediate dilution of a parent solution of a highly purified specimen of the isotopically enriched magnesium materials. For the application as calibration mixtures, a complete uncertainty budget was set up, and is presented and discussed in detail, including the aspects that went into the design of the dilution and mixing approach to minimize uncertainty. The principle parameters for the purpose of the later calibration of the mass spectrometers are the absolute masses of isotopically enriched magnesium materials in the primary calibration mixtures. For the first time relative expanded uncertainties U (k = 2) for these masses of ≤0.005% could be achieved for all mixtures. KW - Atomic weight KW - Magnesium KW - Isotope mixture KW - Purity PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-352564 SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. N1 - Corrigendum: Journal of analytical atomic spectrometry 34 (2019) 2340 VL - 31 IS - 1 SP - 179 EP - 196 PB - Royal Society of Chemistry CY - London AN - OPUS4-35256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labarraque, G. A1 - Oster, C. A1 - Fisicaro, P. A1 - Meyer, Christian A1 - Vogl, Jochen A1 - Noordmann, J. A1 - Rienitz, O. A1 - Riccobono, F. A1 - Donet, S. T1 - Reference measurement procedures for the quatification of platinum-group elements (PGEs) from automotive exhaust emissions N2 - The major source of the anthropogenic platinum group element (PGE) emission is attributed to the use of catalytic converters in automobiles. This paper describes the work performed by three National Metrology Institutes (Laboratoire national de métrologie et d’essais, by the Physikalisch-technische bundesanstalt, Bundesanatalt für materialforschung und prûfung), in the framework of the Joint Research Project 'PartEmission' under the European Metrology Research Program. An analytical procedure based on a cationic exchange protocol and the isotope dilution or standard addition using an Inductived Coupled Plasma Mass Spectrometer, ICP-MS, for the quantification of the elements Pt, Pd and Rh from automotive exhaust emissions is described. Results obtained on a road dust certified reference (BCR 723) material showed a good agreement with the certified values, at ng/g levels, and relative expanded uncertainties within the range of 7–10%. Analysis of filters impacted with automotive exhaust particle emissions (from a diesel engine) showed the amount of collected PGE at levels of 10–1000 pg/filter. Their quantifications followed the developed analytical protocol that had been carried out with relative expanded uncertainties in the range of a few per cent up to 20% per filter. Nevertheless, a lack of homogeneity between the filters was observed, making the comparison between the project partners difficult in the sake of the validation of their analytical procedures on real samples. KW - Automotive pollution KW - Catalytic converters KW - Platinum group elements (PGE) KW - ICP-MS KW - Isobaric interferences KW - Cationic exchange KW - Reference measurement procedures KW - Double isotope dilution KW - Palladium KW - Platinum KW - Automotive exhaust emissions KW - IDMS PY - 2015 U6 - https://doi.org/10.1080/03067319.2015.1058931 SN - 0306-7319 SN - 1029-0397 SN - 0092-9085 VL - 95 IS - 9 SP - 777 EP - 789 PB - Gordon and Breach CY - New York, NY AN - OPUS4-34015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Becker, Dorit A1 - Koenig, Maren A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification Report for the Isotopic Reference Materials ERM-AE142 and ERM-EB400 N2 - Lead (Pb) isotope amount ratios are commonly used in applications ranging from archaeology and forensic sciences to terrestrial and extra-terrestrial geochemistry. Despite their utility and frequency of use, only three certified isotope amount ratio reference materials are currently available for Pb: NIST SRMs 981, 982 and 983. Because SRM 981 has a natural Pb isotopic composition, it is mainly used for correcting instrumental mass discrimination or fractionation. This means that, at present, there are no other certified isotope reference materials with natural Pb isotopic composition that could be used for validating or verifying an analytical procedure involving the measurement of Pb isotope amount ratios. To fill this gap, two new reference materials, both certified for their Pb isotopic composition, have been produced together with a complete uncertainty assessment. These new reference materials offer SI traceability and an independent means of validating or verifying analytical procedures used to produce Pb isotope amount ratio measurements. ERM-EB400 is a bronze material containing a nominal Pb mass fraction of 45 mg/kg. ERM-AE142 is a high purity solution of Pb with a nominal mass fraction of 100 mg/kg. Both materials have been specifically produced to assist analysts in verifying or validating their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). Details on the certification of these isotope reference materials are provided in this report. KW - Lead isotopic composition KW - Isotope ratio KW - Reference material KW - Mass spectrometry PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392060 SP - 1 EP - 16 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 U6 - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinovskiy, D. A1 - Vocke, R. D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. A1 - Näykki, T. A1 - Sara-Aho, T. A1 - Ari, B. A1 - Cankur, O. T1 - CCQM-P134 Pb isotope amount ratios and delta-values in bronze N2 - Isotope amount ratios (hereafter referred to as simply isotope ratios) are proving useful in an ever increasing array of applications that range from studies unravelling transport processes, to pinpointing the provenance of specific samples as well as trace element quantification by using isotope dilution mass spectrometry (IDMS). These expanding applications encompass fields as diverse as archaeology, food chemistry, forensic science, geochemistry, medicine and metrology. However, to be effective tools, the isotope ratio data must be reliable and traceable to enable the comparability of measurement. The importance of traceability and comparability in isotope ratio analysis has already been recognized by the Inorganic Analysis Working Group (IAWG) within the CCQM. Three pilot studies have focused on the quality of isotope ratio determinations (P48 “U isotope ratios in urine”, P75 “stable isotopes in Methionine”, P105 “87Sr/86Sr in wine”). Moreover, isotope ratio measurements are fundamental to IDMS amount of substance determinations. For example, when Pb quantification using IDMS is undertaken, this requires the measurements of Pb isotope ratios. While the requirements for isotope ratio accuracy and precision in the case of of IDMS are generally quite modest, “absolute” Pb isotope ratio measurements for geochemical age dating and source rock characterization as well as forensic provenance and fingerprinting studies require Pb isotope ratio measurements of the highest quality. To support present and future CMCs on isotope ratio determinations, a Key Comparison was urgently needed. Therefore, it was decided at the IAWG meeting in Paris in April 2011 that a Key Comparison on the determination of Pb isotope ratios in a pure Pb solution and in a bronze sample should be organized and accompanied by a pilot study. Measuring Pb isotope amount ratios in a pure Pb solution, while seemingly straight forward, rigorously tests the ability of analyst to correct for any instrumental effects (such as mass discrimination and blank correction) on the measured ratios. Pb, present in trace amounts in a metal matrix sample (e.g. Pb in bronze), provides a real world test of the whole chemical and instrumental procedure, from chemical separation and sample purification to analysis and subsequent correction of appropriate instrumental effects on the separated samples. A suitable bronze material with a Pb mass fraction between 10 and 100 mg·kg-1 was available at BAM. A high purity solution of Pb with a mass fraction of approximately 100 mg·kg-1 was also available. By comparing the Pb isotope ratio results obtained for the bronze sample with the Pb isotope ratio results from the Pb solution, potential biases arising from the processing of the bronze sample could be effectively identified and separated from the instrumental effects arising from the measurement and data processing protocol. KW - Isotope ratio KW - Delta value KW - Molar mass KW - Measurement uncertainty KW - Traceability PY - 2017 UR - https://www.bipm.org/wg/CCQM/IAWG/Allowed/IAWG_Pilot_Studies/CCQM-P134.pdf SP - 1 EP - 42 PB - BIPM (Bureau International des Poids et Mesures) CY - Paris AN - OPUS4-47709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -