TY - JOUR A1 - Hioki, A. A1 - Nonose, N. A1 - Liandi, M. A1 - Jingbo, C. A1 - Liuxing, F. A1 - Chao, W. A1 - Cho, K.H. A1 - Suh, J.K. A1 - Min, H.S. A1 - Lim, Y. A1 - Recknagel, Sebastian A1 - Koenig, Maren A1 - Vogl, Jochen A1 - De Sena, R.C. A1 - Dos Reis, L.A. A1 - Borinsky, M. A1 - Puelles, M. A1 - Hatamleh, N. A1 - Acosta, O. A1 - Turk, G. A1 - Rabb, S. A1 - Sturgeon, R. A1 - Methven, B. A1 - Rienitz, O. A1 - Jaehrling, R. A1 - Konopelko, L.A. A1 - Kustikov, Y.A. A1 - Kozyreva, S.B. A1 - Korzh, A.A. T1 - Final report of the key coamparison CCQM-K88: Determination of lead in lead-free solder containing silver and copper N2 - The CCQM-K88 key comparison was organized by the Inorganic Analysis Working Group of CCQM to test the abilities of the national metrology institutes to measure the mass fraction of lead in lead-free solder containing silver and copper. National Metrology Institute of Japan (NMIJ), National Institute of Metrology of China (NIM) and Korea Research Institute of Standards and Science (KRISS) acted as the coordinating laboratories. The participants used different measurement methods, though most of them used inductively coupled plasma optical emission spectrometry (ICP-OES) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). Accounting for relative expanded uncertainty, comparability of measurement results was successfully demonstrated by the participating NMIs for the measurement of the mass fraction of lead in lead-free solder at the level of 200 mg/kg. It is expected that metals at mass fractions greater than approximately 100 mg/kg in lead-free solder containing silver and copper can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. KW - CCQM KW - Metrology KW - IDMS PY - 2013 U6 - https://doi.org/10.1088/0026-1394/50/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 50 IS - 08002, 1A (Technical Supplement 2013) SP - 1 EP - 19 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H. A1 - Malinowskiy, D. A1 - Ren, T. A1 - Wang, J. A1 - Vocke Jr., R.D. A1 - Murphy, K. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. A1 - Näykki, T. A1 - Sara-Aho, T. A1 - Ari, B. A1 - Cankur, O. T1 - Final report of the key comparison CCQM-K98: Pb isotope amount ratios in bronze KW - CCQM KW - Metrology KW - Isotope amount ratios KW - Lead PY - 2014 UR - http://www.bipm.org/utils/common/pdf/final_reports/QM/K98/CCQM-K98.pdf U6 - https://doi.org/10.1088/0026-1394/51/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A Tech. Suppl. SP - 08017-1 EP - 08017-47 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rienitz, O. A1 - Jährling, R. A1 - Noordmann, J. A1 - Pape, C. A1 - Röhker, K. A1 - Vogl, Jochen A1 - Manzano, J. V. L. A1 - Kozlowski, W. A1 - Caciano de Siena, R. A1 - Marques Rodrigues, J. A1 - Galli, A. H. A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Lee, J. H. A1 - Min, H.-S. A1 - Chingbo, C. A1 - Naijie, S. A1 - Qian, W. A1 - Ren, T. A1 - Jun, W. A1 - Tangpaisarnkul, N. A1 - Suzuki, T. A1 - Nonose, N. A1 - Mester, Z. A1 - Yang, L. A1 - Pagliano, E. A1 - Greenberg, P. A1 - Mariassy, M. A1 - Näykki, T. A1 - Cankur, O. A1 - Coskun, F. G. A1 - Ari, B. A1 - Can, S. Z. T1 - CCQM-K122 "Anionic impurities and lead in salt solutions" N2 - The determination of the mass fractions of bromide, sulfate, and lead as well as the isotopic composition of the lead (expressed as the molar mass and the amount fractions of all four stable lead isotopes) in an aqueous solution of sodium chloride with a mass fraction of 0.15 g/g was the subject of this comparison. Even though the mass fractions ranged from 3 μg/g (bromide) to 50 ng/g (lead), almost all results reported agreed with the according KCRVs. KW - Absolute isotope ratio KW - Lead isotope ratios KW - Metrology KW - Traceability PY - 2020 U6 - https://doi.org/10.1088/0026-1394/57/1A/08012 VL - 57 IS - 1A SP - 8012 PB - IOP Science AN - OPUS4-51156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Yim, Y.-H. A1 - Lee, K.-S. A1 - Goenaga-Infante, H A1 - Malinovskiy, D. A1 - Hill, S. A1 - Ren, T. A1 - Wang, J. A1 - Vocke, R. D. A1 - Murphy, K. E. A1 - Nonose, N. A1 - Rienitz, O. A1 - Noordmann, J. T1 - Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation N2 - Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. KW - Lead isotope variations KW - Radiogenic isotopes KW - Isotope reference material KW - Metrology in chemistry KW - Measurement uncertainty PY - 2019 U6 - https://doi.org/10.1111/ggr.12253 SN - 1751-908X SN - 1639-4488 VL - 43 IS - 1 SP - 23 EP - 37 PB - John Wiley & Sons AN - OPUS4-47383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -