TY - JOUR A1 - Weißhaupt, Petra A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen sources of oligoporus placenta and trametes versicolor evaluated in a 2³ experimental plan N2 - Four full-factorial 2³ experimental plans were applied to evaluate the nitrogen (N) sources of Oligoporus placenta and Trametes versicolor and their interaction with the atmospheric N2-assimilating bacterium Beijerinckia acida. The effects of N from peptone, of sapwood and of N from gaseous N2 on fungal, bacterial and fungal–bacterial activity were investigated. The activities were determined by quantification of biomass, formation of CO2, consumption of O2 and laccase activity. The significance of each effect was tested according to t-test recommendation. The activity of both fungi was enhanced by peptone rather than sapwood or gaseous N2. Nevertheless, comparative studies under an N2-free gas mixture as well as under air revealed that the presence of N2 affected bacterial growth and bacterial–fungal cocultivations. Elemental analysis isotope ratio mass spectrometry (IRMS) of the bacterial and fungal biomass enabled estimation of N transfer and underlined gaseous N2 as requisite for fungal–bacterial interactions. Combining full-factorial experimental plans with an analytical set-up comprising gas chromatography, IRMS and enzymatic activity allowed synergistic effects to be revealed, fungal N sources to be traced, and symbiotic fungal–bacterial interactions to be investigated. KW - Basidiomycetes KW - Diazotroph KW - Full-factorial experimental plan KW - Fungal–bacterial interaction KW - Nitrogen KW - Wood decomposition PY - 2012 U6 - https://doi.org/10.1016/j.funbio.2011.10.002 SN - 1878-6146 SN - 1878-6162 VL - 116 IS - 1 SP - 81 EP - 89 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmalenberger, A. A1 - Pritzkow, Wolfgang A1 - Ojeda, J.J. A1 - Noll, Matthias T1 - Characterization of main sulfur source of wood-degrading basidiomycetes by S K-edge X-ray absorption near edge spectroscopy (XANES) N2 - The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 µg g-1, respectively, while in beech wood approximately 100 and 20 µg g-1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures. KW - Basidiomycetes KW - Fungi KW - S K-edge X-ray absorption near edge spectroscopy (XANES) KW - Sulfur oxidation status KW - Sulfate-esters PY - 2011 U6 - https://doi.org/10.1016/j.ibiod.2011.08.013 SN - 0964-8305 VL - 65 IS - 8 SP - 1215 EP - 1223 PB - Elsevier CY - Barking AN - OPUS4-27546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naumann, Annette A1 - Stephan, Ina A1 - Noll, Matthias T1 - Material resistance of weathered wood-plastic composites against fungal decay N2 - Material performance testing of wood-plastic composites (WPC) requires adequate and time-efficient evaluation of the resistance against fungal colonisation and decay. This study investigates the effects of weathering on WPCs and subsequent material degradation by fungi. Weathering using UV radiation, water spray and repeated frost incidents caused micro- and macro-cracks. Fourier transform infrared spectroscopy (FTIR) demonstrated delignification of wood particles at the weathered WPC surface. Despite of increased surface area, accessibility for fungal hyphae and moisture content, weathering enhanced mass loss due to fungal decay only subtly but not significantly. These potentially enhancing effects for fungal decay are assumed to be outbalanced by delignification due to photo-oxidation and leaching of degradation products resulting in loss of nutrient sources essential for fungal growth. KW - Weathering KW - Fungal decay KW - Fourier transform infrared - attenuated total reflexion (FTIR-ATR) spectroscopy KW - Microscopy KW - Wood-plastic composite (WPC) PY - 2012 U6 - https://doi.org/10.1016/j.ibiod.2012.08.004 SN - 0964-8305 VL - 75 SP - 28 EP - 35 PB - Elsevier CY - Barking AN - OPUS4-27670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noll, Matthias A1 - Conrad, R. A1 - Klose, M. A1 - Kemnitz, D. A1 - Bodelier, P. T1 - Effect of cultivar and soil type on composition and activity of the methanogenic archaeal community inhabiting rice roots T2 - 9th Symposium on Bageco 9 CY - Wernigerode, Germany DA - 2007-06-23 PY - 2007 AN - OPUS4-15014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noll, Matthias A1 - Ferrero, Fabio A1 - Malow, Marcus T1 - Succession of the fungal and bacterial community structure in spruce wood debris T2 - Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie CY - Frankfurt am Main, Germany DA - 2008-03-09 PY - 2008 AN - OPUS4-16727 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Noll, Matthias A1 - Duc, L. A1 - Bürgmann, H. A1 - Zeyer, J. T1 - High diazotrophic diversity in the forefield of a receding alpine glacier T2 - Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie CY - Frankfurt am Main, Germany DA - 2008-03-09 PY - 2008 AN - OPUS4-16728 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noll, Matthias A1 - Wellinger, M. T1 - Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure N2 - As a glacier retreats, it leaves behind it a forefield that has a natural gradient of soil formation age. We systematically sampled the Damma glacier forefield (Switzerland) along a temporal gradient of soils deglaciated between 1956 and 2002. A significant change in organic carbon content, sulfate concentration, pH, water and nucleic acid content was observed along the forefield chronosequence. Based on 16S rRNA gene based fingerprinting, the structure of the bacterial community also shifted along the forefield. Shifts in the structure of the bacterial community were significantly correlated to changes of pH, soil water content and soil age. To test the impacts of an array of environmental variables including soil age, soil water content, and different anions on the structure of the bacterial community we incubated different glacier forefield soils under specific treatment conditions for 30 days at 25 °C. The incubation of recently deglaciated soils resulted into an increase of bacteria from the family Methylocystaceae and from the class Betaproteobacteria while the community composition from matured soil changed to a lesser extent. The total nitrogen concentration in matured soil doubled during incubation, whereas the nitrogen concentrations in recently deglaciated soil stayed constant. This suggested that the microbial ecosystem functioned differently in the mature versus the recently deglaciated soils. Only soil age and soil water content could be singled out as having significant effects on the structure and composition of the bacterial community, despite the fact that bacterial communities in glacier forefields are exposed to other steep environmental gradients. KW - Alpine glacier forefield KW - Bacteria KW - Environmental explanatory variable KW - Soil age KW - Soil water content KW - Succession KW - Nitrogen KW - Inorganic anion PY - 2008 U6 - https://doi.org/10.1016/j.soilbio.2008.07.012 SN - 0038-0717 VL - 40 IS - 10 SP - 2611 EP - 2619 PB - Elsevier CY - Amsterdam AN - OPUS4-17935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ferrero, Fabio A1 - Noll, Matthias A1 - Schmidt, Bernd A1 - Malow, Marcus A1 - Schmidt, Martin T1 - Experimentelle und numerische Analyse des Selbstentzündungsverhalten von Holzhalden T2 - 9. Fachtagung "Anlagen-, Arbeits- und Umweltsicherheit" CY - Köthen, Deutschland DA - 2008-11-06 KW - Brandvermeidung KW - Biomasse KW - Lagerung KW - Schüttgüter KW - Selbstentzündung PY - 2008 SN - 978-3-89746-099-7 SP - 1 EP - 21 PB - VDI, Hallescher Bezirksverein CY - Halle AN - OPUS4-18305 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shrestha, M. A1 - Abraham, W.-R. A1 - Shrestha, P.M. A1 - Noll, Matthias A1 - Conrad, R. T1 - Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids N2 - Methanotrophs in the rhizosphere of rice field ecosystems attenuate the emissions of CH4 into the atmosphere and thus play an important role for the global cycle of this greenhouse gas. Therefore, we measured the activity and composition of the methanotrophic community in the rhizosphere of rice microcosms. Methane oxidation was determined by measuring the CH4 flux in the presence and absence of difluoromethane as a specific inhibitor for methane oxidation. Methane oxidation started on day 24 and reached the maximum on day 32 after transplantation. The total methanotrophic community was analysed by terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. The metabolically active methanotrophic community was analysed by stable isotope probing of microbial phospholipid fatty acids (PLFA-SIP) using 13C-labelled CH4 directly added to the rhizospheric region. Rhizospheric soil and root samples were collected after exposure to 13CH4 for 8 and 18 days. Both T-RFLP/cloning and PLFA-SIP approaches showed that type I and type II methanotrophic populations changed over time with respect to activity and population size in the rhizospheric soil and on the rice roots. However, type I methanotrophs were more active than type II methanotrophs at both time points indicating they were of particular importance in the rhizosphere. PLFA-SIP showed that the active methanotrophic populations exhibit a pronounced spatial and temporal variation in rice microcosms. KW - Methane oxidation KW - Active methanotrophs KW - Rice microcosms KW - PLFA KW - pmoA gene PY - 2008 U6 - https://doi.org/10.1111/j.1462-2920.2007.01462.x SN - 1462-2912 SN - 1462-2920 VL - 10 IS - 2 SP - 400 EP - 412 PB - Blackwell Science CY - Oxford AN - OPUS4-16493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Conrad, R. A1 - Klose, M. A1 - Noll, Matthias A1 - Kemnitz, D. A1 - Bodelier, P.L.E. T1 - Soil type links microbial colonization of rice roots to methane emission N2 - Most of the methane (CH4) emission from rice fields is derived from plant photosynthates, which are converted to CH4. Rice cluster I (RC-1) archaea colonizing the rhizosphere were found to be the methanogens responsible for this process. Hence, RC-1 methanogens seem to play a crucial role in emission of the greenhouse gas CH4. We determined the community composition and activity of methanogens colonizing the roots of eight different rice cultivars after growth on both Italian rice soil and river bank soil, which contained different communities of methanogenic archaea. The community composition was analyzed by terminal restriction fragment length polymorphism and cloning/sequencing of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase. When grown on rice field soil, the methanogenic community of the different rice cultivars was always dominated by RC-1 methanogens. In contrast, roots were colonized by Methanomicrobiales when grown on river bank soil, in which RC-1 methanogens were initially not detectable. Roots colonized with Methanomicrobiales compared with RC-1 exhibited lower CH4 production and CH4 emission rates. The results show that the type of methanogens colonizing rice roots has a potentially important impact on the global CH4 cycle. KW - Gene sequence KW - Methane emission KW - Methanomicrobiales KW - Methyl coenzyme M reductase KW - Ribosomal RNA KW - Rice cluster I KW - Rice cultivar KW - Rice field soil KW - Rice root KW - Terminal restriction fragment length polymorphism PY - 2008 U6 - https://doi.org/10.1111/j.1365-2486.2007.01516.x SN - 1354-1013 SN - 1365-2486 VL - 14 IS - 3 SP - 657 EP - 669 PB - Blackwell Science CY - Oxford AN - OPUS4-16517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -