TY - CONF A1 - Sens-Schönfelder, C. A1 - Niederleithinger, Ernst A1 - Gassenmeier, M. A1 - Thiemann, K. A1 - Köllner, F. T1 - Monitoring and imaging based on interferometric concepts T2 - 7th European workshop on structural health monitoring N2 - Utilization of coherent phase information in complex wave fields forms the basis of interferometric time series analysis. The concept is known since decades, but until about 15 years ago there have been no practical implementations. Meanwhile seismic interferometry is used in a wide range from investigations of the earth’s deep crust to engineering applications. Focused on monitoring and imaging the MIIC (Monitoring and Imaging based on Interferometric Concepts) project as part of the German GeoTechnologien program has contributed to this development. Special attention was given to the transfer of methodology to different length scales that range from centimeters, in laboratory applications, over geotechnical scales to even kilometers in seismological applications. General purpose methods and open source software was developed, which can be used on all scales. The core of the MIIC software is a Python library organized in different modules for various processing tasks. A graphical user interface facilitates the creation of processing routines by visualizing connections and dependencies of variables and by checking the consistency of data types. Example applications have included carbon sequestration, salt mine and railroad embankment monitoring as well as imaging changes in concrete constructions. T2 - 7th European workshop on structural health monitoring CY - Nantes, France DA - 08.07.2014 KW - Ultrasound KW - Seismics KW - Interferometry KW - Monitoring KW - Tomography KW - Concrete KW - Correlation KW - Stress KW - Coda wave interferometry PY - 2014 SP - Paper WeBT6.5, 1441 EP - 1448 AN - OPUS4-31205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bearce, R.G. A1 - Mooney, M.A. A1 - Niederleithinger, Ernst A1 - Revil, A. T1 - Characterization of simulated soilcrete column curing using acoustic tomography T2 - Geo-congress 2014 technical papers (Proceedings) N2 - Implementation of soilcrete columns via jet grouting or deep soil mixing to stabilize problematic subsurface soils is common in underground construction. However, industry is faced with limited options to characterize column geometry and quality of the resulting soilcrete without excavation or destructive testing. Laboratory-scale experiments were conducted on simulated soilcrete columns using crosshole ultrasonic testing to evaluate the feasibility of acoustic tomography to characterize soilcrete geometry and quality. Data were acquired on multiple columns immediately after placement up to a curing time of 120 hours. Jet grout compressional wave velocity (VP) was estimated using a first arrival time approach and inverted to construct acoustic tomograms. Acoustic tomograms indicate that crosshole ultrasonic testing is able to characterize the changes in acoustic properties that result from jet-grout curing, locate contrasts between weaker/stronger regions in the jet grout, and estimate geometry of the column. T2 - Geo-congress 2014 CY - Atlanta, Georgia, USA DA - 23.02.2014 KW - Jet grouting KW - Ultrasound KW - Tomography KW - Ray tracing KW - Simulation PY - 2014 SN - 978-0-7844-1327-2 DO - https://doi.org/10.1061/9780784413272.044 N1 - Serientitel: Geotechnical Special Publication (GSP) – Series title: Geotechnical Special Publication (GSP) VL - 234 SP - 465 EP - 474 AN - OPUS4-32601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Sens-Schönfelder, C. A1 - Grothe, Sven A1 - Wiggenhauser, Herbert T1 - Coda wave interferometry used to localize compressional load effects on a concrete specimen T2 - 7th European workshop on structural health monitoring N2 - Coda Wave Interferometry (CWI), a method to evaluate subtle changes of elastic wave velocity in a medium, has been proven to be effective to detect small changes or ultrasonic velocity in concrete caused by load, temperature, moisture, damage or other means. While classical CWI is just able to determine velocity changes globally in relatively large areas between and around pairs of transmitters and receivers, several approaches have been proposed to identify the area affected by the changes more precisely. Most of them are based on the calculation of sensitivity kernels for de-correlation of signals measured at a specific state against a reference. Others follow simplified approaches. In a laboratory setup a concrete specimen of 1:5 x 1:5 x 0:5 m3 was compressed at a certain point. Maximum loads of 20 to 100 kN have been applied in 5 to 10 kN steps in various cycles. The specimen is equipped with 18 embedded ultrasonic broadband piezo transceivers (60 kHz central frequency). Ten of these receivers have been connected to a multiplexer and ultrasonic transmitting and receiving equipment in a way that allowed almost continuous two way measurements between all sensor pairs. Even simple ways to evaluate the data (e.g. crosscorrelation between signals at different load states) allowed pinpointing the load center at least approximately. A more detailed data evaluation either using CWI or even more one of the more sophisticated localization algorithms gave “sharper” results in terms of localization and a better correlation between load and velocity change/de-correlation. The results are used in upcoming monitoring systems for concrete structures. T2 - 7th European workshop on structural health monitoring CY - Nantes, France DA - 08.07.2014 KW - Concrete KW - Ultrasound KW - Coda wave inteferometry KW - Tomography KW - Correlation KW - Stress KW - Monitoring PY - 2014 SP - Paper WeBT6.3, 1427 EP - 1433 AN - OPUS4-31204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -