TY - JOUR A1 - Thuy, Maximilian A1 - Pedragosa-Rincon, M. A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Environmental Stress Cracking of High-Density Polyethylene Applying Linear Elastic Fracture Mechanics N2 - The crack propagation rate of environmental stress cracking was studied on high-density polyethylene compact tension specimens under static loading. Selected environmental liquids are distilled water, 2 wt% aqueous Arkopal N100 solution, and two model liquid mixtures, one based on solvents and one on detergents, representing stress cracking test liquids for commercial crop protection products. The different surface tensions and solubilities, which affect the energetic facilitation of void nucleation and craze development, are studied. Crack growth in surface-active media is strongly accelerated as the solvents induce plasticization, followed by strong blunting significantly retarding both crack initiation and crack propagation. The crack propagation rate for static load as a function of the stress intensity factor within all environments is found to follow the Paris–Erdogan law. Scanning electron micrographs of the fracture surface highlight more pronounced structures with both extensive degrees of plasticization and reduced crack propagation rate, addressing the distinct creep behavior of fibrils. Additionally, the limitations of linear elastic fracture mechanisms for visco-elastic polymers exposed to environmental liquids are discussed. KW - Crack propagation KW - Environmental stress cracking KW - Fracture toughness KW - Crop protection products KW - High-density polyethylene KW - Craze–crack mechanism KW - Linear elastic fracture mechanics KW - Stress intensity factor PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550476 SN - 2073-4360 VL - 14 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-55047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Alig, I. A1 - Böhning, Martin T1 - A phenomenological criterion for an optical assessment of PE-HD fracture surfaces obtained from FNCT N2 - The full-notch creep test (FNCT) is a common test method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD), e.g. for container materials. The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of PE-HD specimens under constant mechanical load in a well-defined liquid test environment. Since the craze-crack damage mechanism underlying the ESC phenomenon is associated with brittle failure, the occurrence of a predominantly brittle fracture surface is a prerequisite to consider an FNCT measurement as representative for ESC, i.e. a time to failure dominated by craze-crack propagation. The craze-crack propagation continuously reduces the effective residual cross-sectional area of the specimen during the test, which results in a corresponding increase of the effective mechanical stress. Thus, a transition to ductile shear deformation is inevitable at later stages of the test, leading usually to a pronounced central ligament. Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. An enhanced imaging analysis of FNCT fracture surfaces enables a detailed assessment of craze-crack Propagation during ESC. In this study, laser scanning microscopy (LSM) was employed to evaluate whether FNCT fracture surfaces are representative with respect to craze-crack propagation and ESC. Based on LSM height data, a phenomenological criterion is proposed to assess the validity of distinct FNCT measurements. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. Its applicability is verified on a sample basis for seven different commercial PE-HD container materials. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Fracture surfaces KW - Optical criterion of brittleness PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521012 VL - 94 SP - 107002 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Evaluation of the damaging effect of crop protection formulations on high density polyethylene using the Full Notch Creep Test N2 - Four typical high-density polyethylene container materials were used to investigate damage or stress cracking behavior in contact with model liquids for crop protection products. These model liquids are established in German regulations for the approval of dangerous goods containers and consist of typical admixtures used for crop protection products but without biological active ingredients. This study is performed with the standardized method of Full Notch Creep Test, adapting the media temperature to 40 °C according to the usual conditions where these test liquids are applied. The two model liquids differ into a water-based solution and a composition based on different organic solvents which are absorbed by the material up to significant levels. Therefore, extensive sorption measurements are performed. The fracture surfaces obtained are analyzed in detail not only by light microscopy, but also by laser scanning microscopy as well as scanning electron microscopy. Influence of pre-saturation and applied stress are addressed by respective systematic series of experiments. KW - Polyethylene KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture PY - 2021 U6 - https://doi.org/10.1016/j.polymer.2021.123853 SN - 0032-3861 VL - 228 SP - 123853 PB - Elsevier Ltd. AN - OPUS4-52686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maximilian, Thuy A1 - Spyrantis, Alexander A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Maaß, Robert T1 - Spatially resolved roughness exponent in polymer fracture N2 - The fracture surface of slow and continuous crack propagation during environmental stress cracking of a semicrystalline polyethylene exhibits isotropic roughness exponents at the local scale but resolved across the macroscopic fracture surface a clear position dependence is found. The spatially resolved roughness exponent admits values in the range between 0.1 and 0.4, demonstrating nontrivial exponents in the small length-scale regime. Instead, they vary across the fracture surface according to the stress-state distribution, which suggests that the exponents are intimately linked to the locally dominating dissipation processes during craze cracking. KW - Plasticity KW - Fracture KW - Material failure KW - Mechanical deformation PY - 2022 U6 - https://doi.org/10.1103/PhysRevMaterials.6.L090601 VL - 6 IS - 9 SP - 1 EP - 7 PB - American Physical Society CY - USA, Maryland AN - OPUS4-55797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Damaging effect of admixtures used in crop protection products on high density polyethylene packaging material N2 - The phenomenon of environmental stress cracking is still a major issue in materials engineering as well as from a scientific perspective. Especially in the case of packaging materials made of high-density polyethylene, assessing the potential of premature damage due to environmental stress cracking is complex because of the large number of components in possible liquid filling goods. As a first guideline, the well-known effect of detergents and dispersants is usually considered, but the interplay with other components, such as organic solvents is often unknown. Particularly challenging in this respect are crop protection products, consisting of several different admixtures in addition to the biologically active ingredients. This study is based on two model liquids representing these admixtures that were established for testing in this context. The model liquids as well as their constituting components were used as liquid media in the Full Notch Creep Test to characterize the environmental stress cracking behavior of a typical high-density polyethylene. Complementary to the time-to failure of a notched specimen obtained from these tests, the crack opening was monitored optically, and the fracture surface was analyzed post-failure by laser scanning microscopy as well as scanning electron microscopy. Based on the results, the effect of various surfactants as well as the influence of organic solvents on environmental stress cracking are discussed. KW - Environmental stress cracking KW - High-density polyethylene KW - Crop protection products KW - Full notch creep test KW - Fracture surface analysis KW - Crack opening displacement PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-554631 SN - 0142-9418 VL - 114 SP - 1 EP - 16 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-55463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Bruno, Giovanni ED - Erdmann, Maren T1 - Diesel-induced transparency of plastically deformed high-density polyethylene N2 - High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching. KW - PE-HD Sorption KW - Cavitation KW - Diesel Fuel KW - X-ray refraction KW - WAXS KW - Internal Surfaces KW - Crystal Texture PY - 2019 U6 - https://doi.org/10.1007/s10853-019-03700-8 SN - 1573-4803 SN - 0022-2461 VL - 54 IS - 17 SP - 11739 EP - 11755 PB - Springer US CY - US AN - OPUS4-48226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kleinbub, Sherin A1 - Wachtendorf, Volker A1 - Schütter, Jan David A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Koerdt, Andrea T1 - Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment N2 - In the present study, a simple approach was used to investigate the effect of UV-exposure on two high density Polyethylene materials (PE-HD), commonly used for storage tanks, on fuel sorption behavior and colonization by microorganisms. The aim was to investigate whether the sorption behavior of the fuels (diesel/biodiesel) and the colonization by microorganisms, frequently occurring in the fuel, is affected and may lead to undesirable or safety-relevant material changes. We showed that the UV-irradiation leads to significant changes of the sorption behavior due to chemi-crystallization and crosslinking. The fuel Sorption is affected by the UV-induced formation of polar carbonyl and hydroxyl groups predominantly occurring at the surface. With respect to microbial colonization behavior for Bacillus subtilis and Pseudomonas aeruginosa, isolated from a contaminated diesel sample, differences of the initial adhesion could be shown depending on the initial type of polyethylene as well as on the degree of UV-induced degradation. KW - High density polyethylene KW - Bacterial attachment KW - UV-irradiation KW - Fuel sorption PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510001 VL - 4 IS - 1 SP - Article number: 18 PB - Nature Partner Journals AN - OPUS4-51000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509130 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 U6 - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Böhning, Martin A1 - Niebergall, Ute T1 - Physical and chemical effects of biodiesel storage on high-density polyethylene: Evidence of co-oxidation N2 - The physical and chemical effects of diesel and biodiesel fuels on two high-density polyethylene (PE-HD) types were investigated. Both semi-crystalline PE-HD are common thermoplastic materials for container and storage tank applications. Biodiesel, a composition of unsaturated fatty acid esters from renewable resources, was chosen as it is regarded a possible green alternative to fossil fuels. The study aims at identifying significant differences between biodiesel and conventional diesel fuels based on the differences in the chemical nature of the two. The physical effects of the fuels on the polymer at first comprises the sorption behavior, i.e. kinetics and final equilibrium concentration. Not only are both fuels absorbed by the amorphous phase of the semi-crystalline PE-HD, they also induce a plasticization effect that modifies the molecular mobility and therefore also the characteristic yielding properties, manifest in the obtained stress-strain curves. The chemical effects related to degradation phenomena is investigated by a long-term storage scenario using partially immersed tensile test specimens in diesel and biodiesel. We were able to confirm the proposed co-oxidation mechanism by Richaud et al. for polyethylene-unsaturated penetrant systems on a larger scale based on practical tensile tests. One of the investigated polyethylene grades subjected to tensile drawing showed a significant loss of plastic deformation and the onset of premature failure after 150 days of storage in biodiesel. Further biodiesel storage showed a systematically reduced elongation at break before necking. None of these effects were observed in diesel. Oxidation of fuels and polymer after progressing storage times were analyzed by the evolution of carbonyl species in FT-IR/ATR spectroscopy. KW - Biodiesel KW - Degradation KW - Long-term storage KW - Sorption KW - Diesel PY - 2019 U6 - https://doi.org/10.1016/j.polymdegradstab.2019.01.018 SN - 0141-3910 VL - 161 IS - 1 SP - 139 EP - 149 PB - Elsevier CY - Amsterdam AN - OPUS4-47268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -