TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Safety Evaluation of a Package for Radioactive Waste by Full-Scale Drop Testing T2 - Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) N2 - As part of the evaluation of a package for the safe transport of radioactive waste the regulations of the IAEA International Atomic Energy Agency shall be fulfilled. The regulations define requirements for the package and specify mechanical and thermal test conditions. Different methods are allowed for the test performance to demonstrate compliance with the regulations. Next to calculational approaches and the use of models of an appropriate scale, the performance of full-scale testing with prototype packages respectively full-scale models is applied. The use of full-scale models has several advantages within the complete safety assessment procedure for a transport package approval. Scaling and corresponding similarity questions don’t have to be considered, additional material investigations can be limited and analyses to transfer test results to the original package design are reduced in number and complexity. Additionally, experience for future serial design procedures can be built up during manufacturing and assembling of the test model. BAM operates different drop and fire test facilities south of Berlin, Germany. BAM has started to perform a drop test campaign with a full-scale model of 120 metric tons weight for a transport package approval procedure. The paper describes experience with test preparation, drop performance and additional analyses. The measurement concept is explained and test goals regarding the package safety assessment and evaluation of safety margins are introduced. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Slap-down KW - Transport safety KW - Package KW - Drop test KW - Similarity KW - FEA KW - Radioactive waste PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3809.xml SN - 987-981-14-8593-0 SP - Paper 3809,1 EP - 8 PB - Research Publishing Services CY - Singapore AN - OPUS4-50981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive materials transport PY - 2023 SP - 1 EP - 10 AN - OPUS4-57732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Introduction of the German ageing management guide for packages for transport of radioactive materials T2 - Proceedings of the 20th international symposium on the packaging and transportation of radioactive materials N2 - The consideration of ageing mechanisms is with integration of the new para 613A into IAEA SSR-6 (Rev. 1) now obligatory for the design of transport packages. In addition, para 809(f) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that all packaging components and radioactive contents have been maintained during storage in a manner that all requirements specified in IAEA SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled a guideline for the implementation of ageing assessment and of the measures for ageing management of the approval procedure based on requirements of IAEA SSR-6 (Rev.1). The guideline is applicable only for packages requiring a competent authority approval. The paper aims to describe the structure of the guideline and the general approach for ageing management requirements. The type and amount of measures for ageing management depend mainly on the use of the package and on the ageing effects for the component, which result from relevant ageing mechanisms during package operation time. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan (AMP). These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program (ASP) and, if necessary, a gap analysis program shall be developed. The ageing management documentation (AMD) ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - PATRAM22 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Guide KW - Ageing KW - Mechanism KW - Package KW - Management PY - 2023 SP - 1 EP - 10 PB - World Nuclear Transport Institute (WNTI) CY - London AN - OPUS4-57770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -