TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Tidjani, Adams T1 - ZnS as fire retardant in plasticised PVC N2 - The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC-P) materials was investigated. PVC-P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG-FTIR) or with mass spectroscopy (TG-MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG-MS and TG-FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC-P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m-2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC-P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. KW - PVC KW - ZnS KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 U6 - https://doi.org/10.1002/pi.845 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 51 IS - 3 SP - 213 EP - 222 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-1291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Bartholmai, Matthias A1 - Neubert, Dietmar A1 - Schriever, Robert T1 - TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings N2 - Thermogravimetry (TG), thermogravimetry coupled with mass spectroscopy (TG-MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR) were used to characterise the thermo-oxidative behaviour of two intumescent coating materials. The temperature dependence, the corresponding volatile products and the amount of residue of the different processes were determined. Using both TG-MS and TG-FTIR results in an unambiguous interpretation of the volatile products. Characteristics such as the influence of endothermic reactions, the release of non-flammable gases, the dehydrogenation enhancing the char formation and the stability of the cellular char were discussed in detail. It was demonstrated, that TG, TG-MS and TG-FTIR are powerful methods to investigate mechanisms in intumescent coatings and that they are suitable methods in respect to quality assurance and unambiguous identification of such materials. KW - Intumescent coating materials KW - TG KW - TG-FTIR KW - TG-MS PY - 2002 U6 - https://doi.org/10.1023/A:1022272707412 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 70 IS - 3 SP - 897 EP - 909 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-2133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar T1 - Red Phosphorus-Controlled Decomposition for Fire Retardant PA 66 N2 - The thermal degradation and the combustion behavior of glass fiber-reinforced PA 66 materials containing red phosphorus were investigated. Thermogravimetry (TG), TG coupled with FTIR, and TG coupled with mass spectroscopy were used to investigate the thermal decomposition. The flame retardant red phosphorus was investigated with respect to the decomposition kinetics and the release of volatile products. The combustion behavior was characterized using a cone calorimeter. Fire risks and fire hazards were monitored versus external heat fluxes between 30 and 75 kW/m2. Red phosphorus acts in the solid phase and its efficiency depends on the external heat flux. The use of red phosphorus results in an increased amount of residue and in a corresponding decrease in total heat release. The decrease of the mass loss rate peak results in a corresponding decrease of the peak heat release. With increasing external heat flux applied the first effect on the total heat release decreases linearly, whereas the second effect on the peak heat release expands linearly. The investigation provides insight into the mechanisms of how the fire retardant PA 66 is achieved by red phosphorus controlling the degradation kinetics. Taking into account that a decrease of the volatile products also leads to a decrease of heat production in the flame zone and that the char acts as heat transfer barrier, a reduced pyrolysis temperature is suggested as a further feedback effect. T2 - 8th European Conference on fire retardant polymers CY - Alessandria, Italy DA - 2001-06-24 KW - PA 66 KW - Red phosphorus KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 U6 - https://doi.org/10.1002/app.10144 SN - 0021-8995 SN - 1097-4628 VL - 83 IS - 10 SP - 2060 EP - 2071 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-1234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -