TY - CONF A1 - Völzke, Holger A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Nagelschmidt, Sven A1 - Schulz, Sebastian T1 - Investigations on the long term behavior of metal seals for spent fuel storage casks T2 - 52nd INMM Annual meeting (Proceedings) N2 - Metal seals are in common use as an essential component for the leak tight closure of transport and storage casks for spent fuel and vitrified high active waste from reprocessing. They are placed between the massive monolithic cask body made of ductile cast iron or forged steel and the primary and secondary lids, which are fixed with screws around the lid circumference, in order to ensure long term safe enclosure of the radioactive cask inventory. Hereby, long term reliable pressure forces in combination with a tight surface contact are as important as well maintained seal and surface qualities and dry and clean conditions during seal assembly and operation. A few years ago BAM started systematic investigation on the long term seal behavior with re-spect to longer storage periods and seal behavior in accidental cask scenarios with dynamic de-formations of the seal groove geometry or short term drop in pressure force up to lid lifting. BAM has developed test flanges for seals with full scale cross section diameter but much small-er outer diameter to gain representative data for metal-sealed lid systems. They are placed in appropriate testing machines for relevant mechanical loading under static and dynamic condi-tions with the ability to measure the standard helium leakage rate continuously during each test phase. This paper focuses on BAM long term tests of different seal types with aluminum and silver jackets at three different temperatures of +20°C, +100°C and +150°C under static conditions over longer periods of time. Due to creeping effects, a reduction of the pressure force does ap-pear during loading and unloading depending on prior holding times. So far, test results of up to 2 years indicate a clear correlation between seal pressure forces and holding time, temperature and seal type allowing for extrapolating to much longer periods of time. The paper presents basic correlations, test and evaluation procedures as well as important provisional results and gives an outlook on further investigations. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 PY - 2011 SP - 1 EP - 9 AN - OPUS4-24173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Nagelschmidt, Sven A1 - Schulz, Sebastian T1 - Seal and closure performance in long term storage T2 - PSAM 11 ESREL 2012 - 11th International probabilistic safety assessment and management conference & The annual european safety and reliability conference (Proceedings) T2 - PSAM 11 ESREL 2012 - 11th International probabilistic safety assessment and management conference & The annual european safety and reliability conference CY - Helsinki, Finland DA - 2012-06-25 KW - Metal seal KW - Interim storage KW - Long term performance PY - 2012 SP - 1 EP - 8(?) AN - OPUS4-26175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Nagelschmidt, Sven A1 - Schulz, Sebastian T1 - Long-term performance of metal seals for transport and storage casks T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials (Proceedings) N2 - Dual purpose casks for the transportation and storage of spent nuclear fuel and other radioactive materials require very high leak-tightness of lid closure Systems under accident conditions as well as in the long-term to prevent activity release. For that purpose metal seals of specific types with an inner helical spring and outer metal liners are widely used and have shown their excellent performance if certain quality assurance requirements for fabrication and assembling are satisfied. Well defined surface roughness, clean and dry inert conditions are therefore essential. No seal failure in a loaded cask happened under these conditions until today. Nevertheless, the considered and licensed Operation period is limited and all safety assessments have been performed and approved for this period of time which is 40 years in Germany so far. But in the meantime longer storage periods might be necessary for the future and therefore additional material data will be required. BAM is involved in the qualification and evaluation procedures of those seals from the early beginning. Because long-term tests are always time consuming BAM has early decided to perform additional tests with specific test seal configurations to gain a better understanding of the long-term behavior with regard to seal pressure force, leakage rate and useable resilience which is safety relevant mainly in case of accidental mechanical loads inside a storage facility or during a subsequent transport. Main test parameters are the material of the outer seal jacket (silver or aluminum) and the temperature. This paper presents the BAM test program including an innovative test mock-up and most recent test results. Based on these data extrapolation models to extended time periods are discussed, and also future plans to continue tests and to investigate seal behavior for additional test parameters are explained. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 PY - 2013 SP - 1 EP - 13 PB - Omnipress AN - OPUS4-30136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Nagelschmidt, Sven A1 - Schulz, Sebastian T1 - Long term performance of metal seals for transport and storage casks JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - Dual purpose casks for the transportation and storage of spent nuclear fuel and other radioactive materials require very high leak tightness of lid closure systems under accident conditions as well as in the long term to prevent activity release. For that purpose metal seals of specific types with an inner helical spring and outer metal liners are widely used and have shown their excellent performance if certain quality assurance requirements for fabrication and assembling are satisfied. Well defined surface roughness, clean and dry inert conditions are therefore essential. No seal failure in a loaded cask happened under these conditions until today. Nevertheless, the considered and licensed operation period is limited and all safety assessments have been performed and approved for this period of time which is 40 years in Germany so far. However, in the meantime longer storage periods might be necessary for the future and therefore additional material data will be required. BAM is involved in the qualification and evaluation procedures of those seals from the early beginning. Because long term tests are always time consuming BAM has early decided to perform additional tests with specific test seal configurations to gain a better understanding of the long term behaviour with regard to seal pressure force, leakage rate and useable resilience which is safety relevant mainly in case of accidental mechanical loads inside a storage facility or during a subsequent transport. Main test parameters are the material of the outer seal jacket (silver or aluminium) and the temperature. This paper presents the BAM test program including an innovative test mock-up and most recent test results. Based on these data extrapolation models to extended time periods are discussed, and also future plans to continue tests and to investigate seal behaviour for additional test parameters are explained. KW - Metal Seal KW - Spent Fuel KW - Storage KW - Ageing KW - Cask KW - Leak tightness PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000057 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 1 SP - 8 EP - 15 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-32327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -