TY - CONF A1 - Na, S.-J. A1 - Han, S.-W. A1 - Muhammad, S. A1 - Zhang, L. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Karhu, M. A1 - Kujanpa, V. T1 - Flow and Bead Formation Characteristics in High Power Laser Welding at Different Welding Positions (Invited Talk) N2 - The numerical simulations of high power laser keyhole welding at different welding positions are performed by using Volume-Of-Fluid (VOF) method. The main material is SS400. The multi-physics phenomenon is considered using several models, such as the heat flux of Gaussian heat source, the recoil pressure with Clausisus-Clapeyron equation, the Marangoni flow considering temperature gradient, the buoyancy force with Boussinesq approximation, the additional shear stress and heat source due to metallic vapor ejected through keyhole entrance, the bubble formation assumed as adiabatic bubble, and the multiple-reflection by solving proper discriminant, are used. To analyze the fluid flow pattern, the concept of streamline formed by reconstructing the value of the velocity vector is applied. Partial and full penetration cases at different welding positions are considered. The welding position seems to have only a minor influence on bead formation characteristics in both cases. This is probably due to the fact that the recoil pressure has a major influence when compared to other driving forces. The flow characteristics and fluid velocity in weld pool are analyzed to compare the gravity direction effect at different welding positions. It is observed that the clockwise flow pattern is mainly formed by the recoil pressure on the keyhole surface in the case of partial penetration. The laser energy can't maintain the whole weld pool when the weld pool size becomes too large. And then the solidification starts from the middle part of weld pool and a necked weld pool shape is formed. In the full penetration welding, the weld pool flow patterns are affected by the leakage of laser power through the full penetration keyhole and also by surface tension. Furthermore, the numerical simulation of full penetration welding with AISI316L is also performed to analyze the effect of material properties. The weld bead shapes obtained by simulations were compared with the corresponding experimental results to confirm the validity of the process models adopted and the CFD simulation tool. T2 - Lasers in Manufacturing Conference 2015 CY - München, Germany DA - 22.06.2015 KW - Macro Processing (Joining, Welding) KW - Weld pool KW - Flow pattern KW - Different welding position KW - Numerical simulation KW - High power laser keyhole welding PY - 2015 SP - 1 EP - 6 AN - OPUS4-37163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -