TY - JOUR A1 - Krebber, Katerina A1 - Lenke, Philipp A1 - Liehr, Sascha A1 - Nöther, N. A1 - Wendt, Mario A1 - Wosniok, Aleksander A1 - Daum, Werner T1 - Structural health monitoring by distributed fiber optic sensors embedded into technical textiles N2 - Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such 'smart' technical textiles are used for reinforcement of geotechnical and masonry structures. The embedded fiber optic sensors provide online information about the condition of the structure and about the occurrence and location of any damage or degradation.-------------------------------------------------------------------------------------------------------------------------------------------------------- Technische Textilien mit integrierten faseroptischen Sensoren eröffnen neue Möglichkeiten der Zustandsüberwachung (structural health monitoring) in Geotechnik und Ingenieurbau. Die verteilt messenden Sensoren basieren auf der Brillouin-Streuung in Glasfasern und auf der OTDR in polymeroptischen Fasern. Derartige 'intelligente' technische Textilien werden in erster Line zur Verstärkung von geotechnischen Bauwerken und von Gebäuden genutzt. Die integrierten Sensoren liefern eine zeitnahe Information über den bestimmungsgemäßen Zustand des Bauwerks sowie über die Entstehung und den Ort von lokalen Bauwerksschäden. KW - Fiber optic sensor KW - Distributed sensor KW - Brillouin scattering KW - Polymer optical fiber KW - Strain sensor KW - Smart geotextiles KW - Faseroptischer Sensor KW - Verteilter Sensor KW - Brillouin-Streuung KW - Polymeroptische Faser KW - Dehnungssensor KW - Intelligentes Geotextil PY - 2012 U6 - https://doi.org/10.1524/teme.2012.0238 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 7-8 SP - 337 EP - 347 PB - Oldenbourg CY - München AN - OPUS4-26387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nöther, N. A1 - Krebber, Katerina A1 - Schneider-Glötzl, J. T1 - An all-digital implementation of the Brillouin optical frequency domain analysis for long-range distributed strain and temperature monitoring N2 - For long-range measurements in geotechnical and industrial applications, distributed optical fiber sensors have become a tool of increasing importance throughout the past decade. Classic deformation monitoring (performed by strain gauges etc.) and temperature monitoring (Pt100 and alike) deliver data from fixed, single spots of a structure; quasidistributed measurements (fiber bragg gratings) provide a Chain of discrete measurement points along a limited sensing length. In contrast, an opticai fiber connected to a device for distributed strain and temperature sensing (DTSS) will provide a continuous profile of strain and temperature - spatially resolved down to less than 1 m - over a ränge of several tens of kilometers. In DTSS measurements, the nonlinear opticai effect of stimulated Brillouin Scattering (SBS) is employed: two light waves with a stable, tunable frequency offset are injected into opposite ends of the sensing fiber, where they will form a beat pattem, at which parts of the light will be scattered. By matching the frequency offset of the light waves to the propagation of acoustic fluctuation in the opticai fiber, a power transfer from one light wave to the other can be measured; since the acoustic propagation directly shifts with train and temperature of the fiber, these two quantities can be measured by tuning the light waves’ frequency offset. T2 - 8th International symposium on field measurements in geomechanics - FMGM 2011 CY - Berlin, Germany DA - 12.09.2011 PY - 2011 SP - 1 EP - 6 AN - OPUS4-24664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nöther, N. A1 - Wang, S. A1 - Wosniok, Aleksander A1 - Glötzl, R. A1 - Schneider-Glötzl, J. ED - Xu, Y. L. ED - Zhu, S. ED - Xia, Y. ED - Ni, Y.Q. ED - Law, S.S. ED - Yin, J. H. ED - Su, Z.Q. T1 - Distributed Brillouin sensing in optical fibers: Soil displacement monitoring using sensor-equipped geogrids N2 - This paper reports on the application of distributed Brillouin fiber optic sensing to the monitoring of geotechnical structures. The presented approach to Brillouin sensing offers an alternative to the common pulse-based measurements by using the frequency domain analysis. The focus of the research and field-testing work is to collect reliable structural health monitoring data from large-scale structures while preserving the System’s versatility in terms of being suitable for different application environments (soil structures, foundations, concrete construction works, pipelines etc.) and its robustness in being well functioning in harsh environments. Upon reviewing the presented application test, it is concluded that Brillouin frequency domain based monitoring, when applied to geotechnical structures, is capable of providing accurate strain readings representing deformations of the soil body, and reliable temperature readings for generating temperature profiles of the entire structure. An overview of the frequency domain analysis of Brillouin sensing and its digital implementation is given, along with the experiences and insights drawn from an open field test of sensor-equipped geogrid mats. T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure CY - Hong Kong, China DA - 09.12.2013 KW - Structural health monitoring KW - Distributed sensing KW - Fiber-optic sensing KW - Brillouin sensing KW - Strain and temperature measurements KW - Sensor-equipped geosynthetics PY - 2013 SN - 978-962-367-768-4 SP - 290 EP - 295 AN - OPUS4-29914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nöther, N. A1 - Gili, O. A1 - Liehr, Sascha A1 - Lenke, P. ED - Ilki, A. ED - Motavalli, M. ED - Goksu, C. ED - Havranek, B. T1 - Frequency domain-based distributed and dynamic optical fiber sensing in geotechnical and industrial monitoring N2 - This article reports on recent advancements in the field of distributed optical fiber sensing with a focus on the monitoring of geotechnical structures and buildings. While the classical time-domain approach to distributed sensing is widely known, this article provides an introduction into the frequency-domain analysis technique for both distributed Brillouin measurements (as commonly used for strain and temperature monitoring) and for linear backscattering measurements. The article also addresses an issue which arises when truly distributed measurements are compared among each other; a new approach to calculate differential curves from a measurement and a base-line which avoids misleading large amplitudes at physical events with strong gradients is proposed. Finally, a field test of a new read-out technology, the OFDR (optical frequency domain reflectometry) technique providing dynamic readings of length changes between discrete fiber positions, is presented. T2 - SMAR 2013 - 2nd Conference on smart monitoring, assessment and rehabilitation of civil structures CY - Istanbul, Turkey DA - 09.09.2013 PY - 2013 SN - 978-3-033-04055-7 SP - 1 EP - 8 CY - Istanbul, Turkey AN - OPUS4-30122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Königsbauer, Korbinian A1 - Nöther, N. A1 - Schaller, M. B. A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Distributed POF sensors for structural health monitoring in civil construction applications N2 - In this paper, a cost-efficient distributed fiber optic measurement system based on Rayleigh scattering is presented. The distributed digital incoherent optical frequency domain reflectometry (I-OFDR) method is developed for detection of significantly large strain in the range from 3 % up to 10 % as required by end users. For this purpose, a vector network analyzer used in the I-OFDR is replaced by a compact and cost-effective digital data acquisition system. This digital emitting/receiving unit enables the recording of the complex transfer function carrying information about the local deformations along the entire sensing fiber. T2 - POF 2022 The 30th International Conference on Plastic Optical Fibers CY - Bilbao, Spain DA - 26.09.2022 KW - I-OFDR KW - PF-POF KW - Structural health monitoring KW - Rayleigh backscatter measurement KW - Strain detection PY - 2022 VL - 2022 SP - 152 EP - 155 AN - OPUS4-56060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Königsbauer, Korbinian A1 - Wosniok, Aleksander A1 - Nöther, N. A1 - Schaller, B. T1 - Entwicklung eines praxistauglichen POF-basierten Messsystems mittels digitaler I-OFDR zur Dehnungsdetektion T1 - Development of a practicable POF-based measuring system using digital I-OFDR for strain detection N2 - Es wird ein faseroptisches Messsystem vorgestellt, welches auf Basis der Rayleigh-Rückstreumessung eine ortsauflösende Detektion von signifikant großen Dehnungen bei Bauvorhaben im von Anwendern geforderten Größenordnungsbereich von 3 % bis 10 % ermöglicht. Mit dem Verfahren der digitalen inkohärenten optischen Frequenzbereichsreflektometrie (I-OFDR) werden materialspezifische Vorteile robuster perfluorierter polymeroptischer Fasern (PF-POF) erschlossen. Für den angestrebten industriellen Einsatz für die Zustandsüberwachung im Bereich des Tunnel- und Spezialtiefbaus soll die spezifische Rückstreuzunahme in der PF-POF hochauflösend gemessen werden. Diese Veröffentlichung zeigt in ersten Projektergebnissen die Eignung des digitalen I-OFDR für eine Dehnungsdetektion von bis zu 10%. N2 - A fiber-optic measurement system is presented which, based on Rayleigh backscatter measurement, enables distributed detection of significantly large strains in construction projects in the range of 3 % to 10 % required by end users. The method of digital incoherent optical frequency domain reflectometry (I-OFDR) is used exploiting material-specific advantages of robust perfluorinated polymer optical fibers (PF-POF). For the intended industrial application for structural health monitoring in the field of tunnel construction and specialised civil and underground engineering, the specific backscatter increase in the PF-POF is to be measured with high resolution. This publication shows in first project results the suitability of the digital I-OFDR for strain detection up to 10%. T2 - 21. ITG/GMA-Fachtagung CY - Nuremberg, Germany DA - 10.05.2022 KW - Backscatter measurement KW - Optical fiber sensors KW - POF KW - I-OFDR KW - Strain measurement PY - 2022 SN - 978-3-8007-5835-7 SN - 0932-6022 VL - 303 SP - 139 EP - 143 PB - VDE VERLAG GMBH CY - Berlin · Offenbach AN - OPUS4-54851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Nöther, N. A1 - Steffen, Milan A1 - Gili, O. A1 - Krebber, Katerina ED - López-Higuera, J.M. ED - Jones, J. ED - López-Amo, M. ED - Santos, J.L. T1 - Performance of digital incoherent OFDR and prospects for optical fiber sensing applications N2 - We propose a digital implementation of the incoherent optical frequency domain reflectometry (I-OFDR) technique for precise backscatter measurement and optical fiber sensing applications. Specific performance parameters of the I-OFDR are discussed and compared to an analog vector network analyzer-based I-OFDR system. Improved sensitivity, dynamic range and signal stability of the digital I-OFDR is presented and demonstrated by means of quasi-distributed length change measurement. T2 - OFS2014 - 23rd International conference on optical fibre sensors CY - Santander, Spain DA - 02.06.2014 KW - Optical fiber sensors KW - Backscatter measurement KW - Strain sensor KW - OFDR KW - OTDR PY - 2014 U6 - https://doi.org/10.1117/12.2059639 SN - 0277-786X SN - 1996-756X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 9157 SP - 915737-1 EP - 915737-4 AN - OPUS4-30899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Königsbauer, Korbinian A1 - Wosniok, Aleksander A1 - Nöther, N. A1 - Schaller, M. B. T1 - POF-based digital I-OFDR for strain detection in road construction N2 - We report on the development of a field-proven distributed fiber optic sensing system for structural health monitoring in road construction and civil engineering. The system is based on a cost-efficient digital incoherent optical frequency domain reflectometry (I-OFDR) for distributed strain detection along a polymer optical fiber. In this method, the strain-induced backscatter increase in a graded-index multimode perfluorinated polymer optical fiber (PF-POF) is determined by measuring the complex transfer function of the sensing fiber using a compact digital data acquisition unit. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.2023 KW - Digital I-OFDR KW - Perfluorinated polymer optical fiber KW - Smart geosynthetics KW - Structural health monitoring KW - Road construction KW - Civil engineering PY - 2023 U6 - https://doi.org/10.1117/12.2678436 SP - 1264326-1 PB - SPIE AN - OPUS4-57592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -