TY - CONF A1 - Droste, Bernhard A1 - Musolff, André A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop and fire testing of spent fuel and HLW transport casks at "BAM test site technical safety" - 10079 T2 - WM2010 - 36th Annual radioactive waste management symposium - Improving the future by dealing with the past (Proceedings) T2 - WM2010 - 36th Annual radioactive waste management symposium CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - transport packages of radioactive materials KW - Safety KW - Mechanical tests KW - Thermal tests KW - Drop test facility KW - Fire test facilities KW - Numerical calculations PY - 2010 SN - 978-0-9828171-0-0 SP - 1 EP - 11 CY - Tempe, AZ, USA AN - OPUS4-21830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Musolff, André A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop and fire testing of spent fuel and HLW transport casks at 'BAM test site technical safety' JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - BAM, as a competent German government institute for the mechanical and thermal testing of radioactive material transport and storage containers, operates unique drop and fire test facilities for experimental investigations on the open air BAM Test Site Technical Safety. To be able to perform even drop tests with full scale spent fuel or HAW casks (i.e. the German CASTOR cask designs), BAM constructed in 2004 a large drop test facility capable to handle 200 ton test objects, and to drop them onto a steel plate covered unyielding target with a mass of nearly 2600 ton. Drop test campaigns of the 181 ton GNS CONSTOR V/TC, the 129 ton MHI MSF-69BG and a 1:2 scale model of the GNS CASTOR HAW28M (CASTOR HAW/TB2) have been performed since then. The experimental BAM drop testing activities can be supported also by drop testing of smaller packages (up to 2 ton) in an in-house test facility and by dynamic, guided impact testing of package components and material specimen inside a new drop test machine. In May 2008, a new modern fire test facility was put into operation. The facility provides two test stands fired with liquid propane. Testing in every case has to be completed by computational investigations, where BAM operates appropriate finite element modelling on appropriate computer codes, e.g. ABAQUS, LS-DYNA, ANSYS and other analytical tools. KW - Package testing KW - Drop testing KW - Fire testing KW - Regulations PY - 2011 DO - https://doi.org/10.1179/1746510912Y.0000000002 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 200 EP - 205 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Feldkamp, Martin A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behaviour of transport package impact limiters and of fire spread impact onto the cask T2 - Proceedings of the ASME 2018 Pressure Vessels an Piping Conference N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Shock absorber KW - Impact limiter KW - Wood KW - Thermal testing KW - Fire KW - Smoldering KW - IAEA KW - Fire test PY - 2018 SN - 978-0-7918-5170-8 VL - PVP2018 SP - 84714-1 EP - 84714-10 AN - OPUS4-46984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Behavior of wood filled impact limiters during the IAEA thermal test T2 - Proceedings-CD, ASME 2017 Pressure Vessels & Piping Conference (PVP 2017) N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that transport casks meet the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. It is required that the mechanical tests have to produce maximum damage, taking into account the thermal test. Furthermore, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. Concerning the thermal test, the IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur caused by smoldering of the wood. This effect should be considered within the safety assessment of the package. A heat wave from the fire could overlap with the additional energy from the impact limiter in the sealing system. In 2015 BAM conducted small scale fire tests with wood filled metal drums showing continuing combustion processes during the cooling down phase. As not much is known about smoldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the most damaging energy flow from the impact limiter to the containment system in dependence of time. More research has to be done to develop models to examine the effects of smoldering impact limiters on the containment of packages for the assessment. The process of smoldering is described with regard to the requirements in the thermal safety assessment. Parameters influencing the smoldering process are identified. BAM operates test facilities to examine the issue of mechanical damage, combustion and heat transfer of packages for transport of radioactive material. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smoldering under the consideration of relevant regulatory boundary conditions. T2 - ASME 2017 Pressure Vessels and Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Fire test KW - Wood KW - IAEA KW - Smoldering KW - Smouldering KW - Shock absorber KW - Thermal test KW - Combustion KW - Impact limiter PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A038, 1 EP - 9 AN - OPUS4-43172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank A1 - Schönfelder, Thorsten T1 - Aspects of assessment of packages with wood filled impact limiters during fire tests T2 - WM 2017 Conference Proceedings N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that the transport casks meet the mechanical and thermal IAEA regulatory test requirements. According to the accident conditions of transport it is mandatory to expose the specimens to a cumulative effect by mechanical and thermal impacts. The mechanical tests consist of a free drop from 9 m onto a flat unyielding target and a 1 m drop onto a puncture bar. After damage caused by mechanical test sequences the package has to withstand a severe fire scenario. Corresponding to the IAEA advisory material it is required that the impact attitudes for the 9 m drop test and for the puncture test have to be such as to produce maximum damage, taking into account the thermal test. Moreover, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. During and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur. This effect should be considered within the safety assessment of the containment. Thermal effects at the closure system of the cask, which might result in an elevated activity release, have to be excluded. BAM conducted small scale tests with wood filled metal buckets showing continuing combustion processes during the cooling down phase. These test results are presented. As not much is known about smouldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the maximum damaging energy flow from the impact limiter to the containment system. More research has to be done to develop models to examine the effects of smouldering impact limiters on the containment of packages for the transport of radioactive material. Aspects of assessment and its difficulties are shown. BAM as a competent authority for the approval of transport casks for radioactive material in Germany operates the test facilities to examine the issue of mechanical damage, combustion and heat transfer for such kind of package systems. For this purpose the knowledge from real drop tests with casks of a mass partly over 100 tons was transferred to a test application. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smouldering under the consideration of relevant regulatory boundary conditions. The process of smouldering is described with regard to the requirements in the thermal assessment of safety of packages for the transport of radioactive material. Requirements concerning the pre-damage of packages for the maximum damage of impact limiters are discussed. Parameters influencing the smouldering process are identified. T2 - WM 2017 Conference CY - Phoenix, AZ, USA DA - 05.03.2017 KW - Fire test KW - Wood KW - Combustion KW - Smouldering KW - Smoldering KW - Impact limiter KW - Shock absorber KW - Thermal test KW - IAEA PY - 2017 SN - 978-0-9828171-6-2 SP - 1 AN - OPUS4-40157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Erenberg, Marina A1 - Wille, Frank T1 - Behaviour of Wood Filled Impact Limiters during Fire Test T2 - Proceedings of the 18th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2016) N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure the transport cask meets the mechanical and thermal IAEA regulatory test requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. According to the regulations during and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Corresponding to results of the French institute IRSN combustion and smouldering of wood inside the impact limiter occurred during and after the fire test. An additional energy supply from a pre-damaged impact limiter to the cask could be the consequence for the safety assessment of the containment. BAM started a first test phase to examine the issue of combustion for such kind of package components. The goal was to understand the phenomena under the consideration of relevant regulatory boundary conditions. Several metal buckets were filled with wood and equipped with thermocouples. The test specimens have been prepared with different damage arrangements to take the influence of the mechanical tests into account. This paper shows the experimental setup and the conduction of the tests. The first test shows that pre-damaged metal encapsulations can lead to smouldering of the wood and with this to a supplement energy release after the end of the 30 minute fire. BAM is in the preparation process for a second test phase. A thermal test will take place with a wood filled test specimen weighing about 2Mg. T2 - The 18th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2016) CY - Kobe, Japan DA - 18.09.2016 KW - Large scale testing KW - Fire test KW - Impact limiter KW - Shock absorber KW - Thermal test KW - Typ-B KW - Wood KW - Smouldering PY - 2016 SP - paper no. 1011 AN - OPUS4-37854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Wille, Frank T1 - Combustion of wood encapsulated in steel sheets during fire test T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage (Proceedings) N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by Steel sheets. These impact limiters shall ensure the transport cask meets the IAEA safety requirements. After damage caused by the mechanical tests the package has to withstand a severe fire scenario. According to the regulations during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Due to results of the French institute IRSN it was shown that after the fire test an additional energy supply from a pre-damaged impact limiter should be taken into account. The combustion or smouldering of wood was of interest. BAM started a first test phase to examine the issue of combustion for such kind of package components. The goal was to understand the phenomena under the consideration of relevant regulatory boundary conditions. Several metal buckets were filled with wood and equipped with thermocouples. The test specimens have been prepared with different damage arrangements to take the influence of the mechanical tests into account. This paper shows the experimental Setup and the conduction of the tests. The first test shows that pre-damaged metal encapsulations can lead to smouldering of the wood and with this to a Supplement energy release after the end of the 30 minute fire. The consequence could be, to consider additional thermal loads of wood filled impact limiters to filled the IAEA regulations, if the conditions of the tests are transferable to the safety analysis of the package design. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Typ-B KW - Impact limiter KW - Shock absorber KW - Wood KW - Thermal test KW - Fire test PY - 2015 SP - 1 EP - 9 AN - OPUS4-33407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Fire KW - Testing KW - Hydrogen KW - Wood KW - Propane KW - Heat Flux KW - Fire Reference Package KW - Radioactive Material PY - 2023 SP - 1 EP - 10 AN - OPUS4-57721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of Fire Test Stand Performance at Test Site of BAM: Installation and Evaluation of an Augmented System with a Fire Reference Package T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Packages for the transport of radioactive material are designed to en-dure severe accidents. Packages for the transportation of radioactive material must demonstrate that the package can withstand certain prescribed tests from the IAEA Regulations [1]. In addition to mechanical tests, a thermal test in form of a fire test must be carried out. As packages to be tested at BAM are signifi-cantly larger than previous package designs, BAM has expanded an existing fire test stand. A modular concept is chosen, which means that the arrangement of the burner nozzles can be adapted to the test specimen. The dimensions of the burner rings, the type, the orientation and the number of burner nozzles can be varied depending on the test specimen. In addition, various pumps can be used to set the corresponding mass flow. With the help of a calorimeter test, the fire test stand can be qualified for a specific size of packages regarding the boundary conditions of the IAEA Regulations [1]. Due to the typically wood filled impact limiters in German package designs, a fire test is necessary, as experiments have shown that possible openings that occurred during a mechanical test contributed to the igni-tion of the wood filled impact limiters within the prescribed 30 minutes of the IAEA Regulations [1]. From a series of experiments, two experiments are pre-sented to show the possibilities to obtain different temperatures and temperature rates in the test specimen. In addition to sensor data, the heat flux into the package is calculated to verify that the IAEA boundary conditions are satisfied. In addition to the temperature data, other data such as wind speed and wind direction are also recorded to explain subsequent effects in the measurement data in a comprehen-sible manner. T2 - Wood & Fire Safety 2024 CY - Strbske Pleso, Slowakei DA - 13.05.2024 KW - IAEA Regu-lations KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification PY - 2024 UR - https://link.springer.com/book/9783031591761 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 VL - 1 SP - 1 EP - 8 PB - Springer Cham AN - OPUS4-60101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Müller, Karsten A1 - Musolff, André T1 - Characterisation of shock absorber deformation by optical surface digitisation JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - The performance of shock absorbers has been tested in specific regulatory drop tests onto an unyielding target at the BAM drop test facility. Optical surface digitisation methods have been used to measure, analyse and evaluate permanent deformations of shock absorbers more systematically. The measurement principle of the used fringe projection technique and its technical application to shock absorber investigations is explained in detail. Furthermore, examples of shock absorber testing results as well as final data visualisation are given in the present paper. KW - Approval assessment of packages KW - Shock absorber KW - Drop test KW - Optical deformation measurement KW - Fringe projection KW - Three-dimensional surface digitisation KW - Optische Digitalisierung KW - Streifenprojektion KW - Fotogrammetrie KW - 3D-Verformung KW - Behälterzulassung PY - 2008 DO - https://doi.org/10.1179/174651008X362566 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 3 SP - 155 EP - 159 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-18562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Müller, Karsten A1 - Musolff, André T1 - Characterization of shock absorber deformation by optical surface digitization T2 - PATRAM 2007 - 15th International symposium on the packaging and transportation of radioactive materials (Proceedings) N2 - The performance of shock absorbers has been tested in specific regulatory drop tests onto an un-yielding target at the BAM drop test facility. Optical surface digitization methods have been used to measure, analyze and evaluate permanent deformations of shock absorbers more systemati-cally. The measurement principle of the fringe projection technique used and its technical appli-cation to shock absorber research is explained in detail in this paper. Furthermore, examples of shock absorber testing results as well as final data visualization are presented. T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - 3D Verformung KW - Optische Digitalisierung KW - Behälterzulassung KW - Streifenprojektion KW - Fotogrammetrie PY - 2007 IS - Paper 84 SP - 1 EP - 6 PB - Institute of Nuclear Materials Management AN - OPUS4-18692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Impact Analysis of RAM Packages under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - RAM packages KW - Drop test KW - Impact KW - Radioactive PY - 2016 AN - OPUS4-38860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Kinematic KW - Analysis PY - 2018 AN - OPUS4-44874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Analysis of RAM Packages Drop Testing under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behaviour of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. Accelerometers are widely used for the measuring of motion i.e. velocity or the displacement of the rigid cask body, vibration and shock events. Acceleration measurements as well as their analysis are often very complex and extensive also because they are in turn embedded in complex drop test experiments having to consider difficult boundary conditions as for example very low specimen temperatures, large drop heights and sophisticated drop orientations of the specimen. In every case special instruments and adequate technical equipment is required to accelerations under these and transient shock conditions which are characterized in our case by impact times in the range of a few milliseconds up to perhaps 100 Milliseconds naturally depending on container design and drop test conditions as drop height and target. The paper gives an overview of drop tests under kinematic aspects performed with RAM packages. Furthermore, experimental advancements of accelerometer instrumentation within drop testing, e.g. the characteristics and possibilities of accelerometers, behavior of accelerometers and various influence factors are shown. T2 - International High-Level Radioactive Waste Management 2019 (IHLRWM 2019) CY - Knoxville, TN, USA DA - 14.04.2019 KW - Accelerometer KW - Radioactive KW - Packages KW - Drop test KW - Kineatic aspects KW - Measurement PY - 2019 AN - OPUS4-48039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Nehrig, Marko A1 - Wille, Frank A1 - Êhrenberg, M. T1 - Fire Influence to Wood Filled Impact Limiters - Implications for the Package Design Safety Case N2 - Impact limiters with wooden components are widely used in the design of packages for transportation of radioactive material. In most designs, the wood is encapsulated with steel sheets. Impact limiters mainly determine the mechanical and thermal behaviour of the package in accident conditions of transport in accordance with the IAEA Regulations. In context with research and development for package design approval competence, the thermal behaviour of heavy-weight packages was investigated at BAM with an artificially pre-damaged generic impact limiter design. Within this first investigation, the pre-damaged impact limiter with a diameter of 2.3 meters was mounted on a water tank simulating the thermal capacity of a cask during the fire test. The water tank is part of a water circulating system built of several components such as pump, heater, cooler, sliding valve, flow meter, thermocouples and control unit in order to measure the heat flux. Furthermore, the investigations focus on the effects this additional heat generation would have on the cask and especially on the lid-closure system with the gasket. The results of these experiments could find consideration in the safety case of the transport packages of radioactive material using wood filled impact limiters. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Fire test KW - Impact limiter KW - Mechanical and thermal behaviour PY - 2023 AN - OPUS4-57719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests T2 - WM2018 Symposia (Proceedings) N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Analysis KW - Prototyp PY - 2018 SP - Paper 18149, 1 EP - 12 AN - OPUS4-44872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Müller, Karsten A1 - Neumann, Martin A1 - Kadji, Arsène Brice A1 - Droste, Bernhard T1 - Drop Results of the full-scale CONSTOR V/TC prototype T2 - PATRAM 2007 T2 - PATRAM 2007 CY - Miami, FL, USA DA - 2007-10-21 PY - 2007 AN - OPUS4-16054 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Minack, Mathias T1 - Bauteilerprobung und -prüfung im geführten Fallprüfstand T2 - Tagung "Werkstoffprüfung 2007" T2 - Tagung "Werkstoffprüfung 2007" CY - Neu-Ulm, Germany DA - 2007-11-29 PY - 2007 AN - OPUS4-16142 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas T1 - Characterisation of shock-absorbing components under impact loading T2 - DYMAT 2009, Royal Military Academy T2 - DYMAT 2009, Royal Military Academy CY - Brussels, Belgium DA - 2009-09-07 PY - 2009 AN - OPUS4-18580 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Droste, Bernhard A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Komann, Steffen T1 - Drop Test Program with the Half-Scale Model CASTOR HAW/TB2 T2 - 16th International Symposium on the Packaging and Transport of Radioactive Materials PATRAM T2 - 16th International Symposium on the Packaging and Transport of Radioactive Materials PATRAM CY - London, England DA - 2010-10-03 PY - 2010 AN - OPUS4-22133 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -