TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Variation of intumescent coatings revealing different modes of action for good protection performance JF - Fire Technology N2 - Thermal insulation and mechanical resistance play a crucial role for the performance of an intumescent coating. Both properties depend strongly on the morphology and morphological development of the foamed residue. Small amounts (4 wt%) of fiberglass, clay and a copper salt, respectively, are incorporated into an intumescent coating to study their influence on the morphology and Performance of the residues. The bench scale fire tests were performed on 75 x 75 x 2 mm³ coated steel plates according to the standard time–temperature curve in the Standard Time Temperature Muffle Furnace+ (STT Mufu+). It provided information about foaming dynamics (expansion rates) and thermal insulation. Adding the copper salt halved the expansion height, whereas the clay and fiberglass Change the height of the residue only moderately. The time to reach 500 °C was improved by 31% for clay and 15% for the other two fillers. Nondestructive micro computed tomography is used to assess the inner structure of the residues. A transition of the residue from a black, carbonaceous foam with closed cells into an inorganic, residual open cell sponge occurs at high temperatures. This transition is due to a loss of carbon; the change in microstructure is analyzed by scanning electron microscopy. Additional mechanical tests are performed and interpreted with respect to the results of the morphology analysis. Adding clay or copper salt improved the mechanical resistance tested by a factor 4. The additives significantly influence the thickness and foaming Dynamics as well as the inner structure of the residues, whereas their influence on insulation Performance is moderate. In conclusion, different modes of action are observed to achieve similar insulation performance during the fire test. KW - Intumescence KW - Coating KW - Bench scale fire testing KW - Computed tomography KW - Fire resistance PY - 2017 DO - https://doi.org/10.1007/s10694-017-0649-z SN - 0015-2684 SN - 1572-8099 VL - 53 IS - 4 SP - 1569 EP - 1587 PB - Springer AN - OPUS4-40751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Size is not all that matters: Residue thickness and protection performance of intumescent coatings made from different binders JF - Journal of Fire Sciences N2 - In addition to the acid source, charring agent, and blowing agent, the binder is a crucial part of an intumescent coating. Its primary task is to bind all compounds, but it also acts as a carbon source and influences the foaming process. A series of intumescent coatings based on five different binders was investigated in terms of insulation, foaming, mechanical impact resistance, and residue morphology. The Standard Time-Temperature modified Muffle Furnace (STT MuFu+ ) was used for the bench-scale fire resistance tests and provided data on temperature and residue thickness as well as well-defined residues. The residue morphology was analyzed by nondestructive m-computed tomography and scanning electron microscopy. A moderate influence of the binder on insulation performance was detected in the set of coatings investigated, whereas the foaming dynamics and thickness achieved were affected strongly. In addition, the inner structure of the residues showed a rich variety. High expansion alone did not guarantee good insulation. Furthermore, attention was paid to the relation between the microstructure transition induced by carbon loss due to thermo-oxidation of the char and the development of the thermal conductivity and thickness of the coatings during the fire test. KW - Intumescence KW - Morphology analysis KW - Computed tomography KW - Fire resistance KW - Bench-scale fire test KW - Fire protective coating PY - 2017 DO - https://doi.org/10.1177/0734904117709479 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 4 SP - 284 EP - 302 PB - Sage AN - OPUS4-40766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescent chars by advanced small scale tests combined with µ-CT T2 - Fire and materials 2015 - 14th International conference and exhibition (Proceedings) N2 - Testing of intumescent coatings for Steel is usually done in intermediate scale or even full scale experiments and is hence quite expensive. We developed two complementary small scale tests, simulating fully developed Tire. First is a strongly modified electrical muffle furnace, which is now able to follow the Standard temperature-time curve (according EN 1363-1) for 90 min in a very accurate manner. Düring the experiment backside temperatures are recorded and the growth of the char is observed with a custom made high temperature endoscope. Second is a testing apparatus based on a propane-oxygen-bumer for direct severe flame impingement of coated samples, reaching temperatures far above 1500 °C. Our small scale samples are coated Steel plates of a size of 75 x 75 x 2 mm3. The structure-propertyrelation between additives, thermal properties and morphology of the char were examined using a well determined series of samples consisting of basic composition mixed with different additives. With the burner-testing-apparatus we studied the behavior of a high performance coating, which shows a transformation of the carbonaceous char into a ceramic foam at temperatures as high as 1600 °C. Nondestructive micro-computed tomography was used to characterize the morphology of the char. According to the structure of the foams we used different analytic methods like cell-detection or wallthickness-analysis. Additional scanning electron and optical microscopy were performed. The combination of the CT-data with the measured backside temperatures of the different samples provides us a deep understanding of the interaction between isolating properties and morphology of intumescent chars. T2 - Fire and materials 2015 - 14th International conference and exhibition CY - San Francisco, CA, USA DA - 02.02.2015 PY - 2015 SP - 478 EP - 483 PB - Interscience Communications AN - OPUS4-32710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescent chars by advanced small scale tests combined with µ-CT T2 - 14th International Conference Fire and Materials 2015 T2 - 14th International Conference Fire and Materials 2015 CY - San Francisco, USA DA - 2015-02-02 PY - 2015 AN - OPUS4-32631 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescence: Advanced standard time temperature oven (STT Mufu+)—my‐computed tomography approach JF - Fire and Materials N2 - Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire Scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand coated full‐scale components or intermediate‐scale specimen. The STT Mufu+ (standard time temperature muffle furnace+) approach is presented. It is a recently developed bench‐scale testing method to analyze the performance of intumescent coatings. The STT Mufu+ provides vertical testing of specimens with reduced specimen size according to the STT curve. During the experiment, the foaming process is observed with a high‐temperature endoscope. Characteristics of this technique like reproducibility and resolution are presented and discussed. The STT Mufu+ test is highly efficient in comparison to common tests because of the reduced sample size. Its potential is extended to a superior research tool by combining it with advanced residue analysis (μ‐computed tomography and scanning electron microscopy) and mechanical testing. The benefits of this combination are demonstrated by a case study on 4 intumescent coatings. The evaluation of all collected data is used to create performance‐based rankings of the tested coatings. KW - Bench‐scale fire testing KW - Computed tomography KW - Fire resistance KW - Intumescence KW - Residue analysis KW - Standard time temperature furnace PY - 2017 DO - https://doi.org/10.1002/fam.2426 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 8 SP - 927 EP - 939 PB - Wiley AN - OPUS4-42754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Gluth, Gregor A1 - Watolla, Marie-Bernadette A1 - Morys, Michael A1 - Häßler, Dustin A1 - Schartel, Bernhard T1 - Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen JF - Bautechnik N2 - Wesentlich für das Sicherheitsniveau und damit die nachhaltige Wettbewerbsfähigkeit des Technologiestandortes Deutschland ist der Brandschutz in Industrieanlagen, in Gebäuden und im Transportwesen. Der vorbeugende bauliche Brandschutz hat u. a. das Ziel, die Brand- und Rauchausbreitung im Brandfall für eine gewisse Zeit zu behindern, damit die erforderlichen Lösch- und Rettungsarbeiten durchgeführt werden können. Dies geschieht u.a. durch Anforderungen an die Feuerwiderstandsfähigkeit brandbeanspruchter Bauteile. Der Feuerwiderstand eines Bauteils ist die Fähigkeit während eines angegebenen Zeitraums in einer genormten Feuerwiderstandsprüfung bezüglich mechanischer Stabilität und/oder thermischer Isolierung nicht zu versagen. Reaktive Brandschutzbeschichtungen erhöhen für viele Bauteile sehr effektiv den Feuerwiderstand. Die Beschichtungen und die Brandprüfungen müssen jedoch an die immer komplexeren Anwendungen und/oder extremeren Anforderungen angepasst und weiterentwickelt werden. Aktuelle Forschungsschwerpunkte liegen dabei in der Entwicklung neuer Materialien (z.B. Geopolymere, keramisierende Beschichtungen, silikonbasierte Beschichtungen) für extreme Brandszenarien (extreme Temperaturen, lange Beanspruchungszeiten) und in der Realisierung komplexer Funktionalitäten (komplexe Geometrien, bewegliche Komponenten) sowie in der Entwicklung neuer Testmethoden (Feuerwiderstand als bench-scale Tests, kostengünstiges Screening, Feuerwiderstand in extremen Brandszenarien). Die Entwicklung geht dabei weg von der präskriptiven Bewertung hin zur leistungsorientierten (performance-based) Bewertung in individuellen Brandszenarien oder von komplexen Bauteilen. Im Rahmen dieser Arbeit werden Lösungsansätze für die neuen Herausforderungen an die reaktiven Brandschutzsysteme unter Extrembedingungen und deren Testmöglichkeiten vorgestellt und diskutiert. Im Mittelpunkt stehen dabei neu entwickelte bench-scale Testmethoden zum Screening von neuen Beschichtungsmaterialien sowie zur Beurteilung spezieller bzw. materialspezifischer Aspekte des Feuerwiderstands unter Extrembedingungen. KW - Reaktive Brandschutzsysteme KW - Brandtest PY - 2016 DO - https://doi.org/10.1002/bate.201600032 SN - 0932-8351 SN - 1437-0999 VL - 93 IS - 8 SP - 531 EP - 542 PB - Ernst & Sohn Verlag CY - Berlin AN - OPUS4-37115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Morys, Michael A1 - Schartel, Bernhard T1 - Multilayer graphene/chlorine-isobutene-isoprene rubber nanocomposites: the effect of dispersion JF - Polymers for Advanced Technologies N2 - Multilayer graphene (MLG) is composed of approximately 10 sheets of graphene. It is a promising nanofiller just starting to become commercially available. The Dispersion of the nanofiller is essential to exploit the properties of the nanocomposites and is dependent on the preparation method. In this study, direct incorporation of 3 parts per hundred of rubber (phr) MLG into chlorine-isobutene- isoprene rubber (CIIR) on a two-roll mill did not result in substantial enhancement of the material properties. In contrast, by pre-mixing the MLG (3 phr) with CIIR using an ultrasonically assisted solution mixing procedure followed by two-roll milling, the properties (rheological, curing, and mechanical) were improved substantially compared with the MLG/CIIR nanocomposites mixed only on the mill. The Young’s moduli of the nanocomposites mixed in solution increased by 38%. The CIIR/MLG nanocomposites produced via solution showed superior durability against weathering exposure. KW - Multilayer graphene KW - Nanocomposite KW - Dispersion KW - Rubber PY - 2016 DO - https://doi.org/10.1002/pat.3740 SN - 1042-7147 SN - 1099-1581 VL - 27 IS - 7 SP - 872 EP - 881 PB - Wiley AN - OPUS4-36866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Morys, Michael A1 - Böhning, Martin A1 - Rybak, Thomas T1 - Multilayer graphene rubber nanocomposites JF - AIP Conference Proceedings N2 - Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m²/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development. T2 - TOP 2016, VIII International Conference on “Times of Polymers and Composites” CY - Naples, Italy DA - 19.06.2016 KW - Graphene KW - Nanocomposite KW - Rubber PY - 2016 SN - 978-0-7354-1390-0 DO - https://doi.org/10.1063/1.4949621 SN - 0094-243X SN - 1551-7616 VL - 1736 SP - 020046, 1 EP - 4 PB - AIP AN - OPUS4-36864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Patrick A1 - Morys, Michael A1 - Sut, Aleksandra A1 - Jäger, Christian A1 - Illerhaus, Bernhard A1 - Schartel, Bernhard T1 - Melamine poly(zinc phosphate) as flame retardant in epoxy resin: Decomposition pathways, molecular mechanisms and morphology of fire residues JF - Polymer Degardation and Stability N2 - Synergistic multicomponent systems containing melamine poly(metal phosphate)s have been recently proposed as flame retardants. This work focuses on the decomposition pathways, molecular mechanisms and morphology of the fire residues of epoxy resin (EP) flame retarded with melamine poly(zinc phosphate) (MPZnP) to explain the modes of action and synergistic effects with selected synergists (melamine polyphosphate (MPP) and AlO(OH), respectively). The total load of flame retardants was always 20 wt.%. The decomposition pathways were investigated in detail via thermogravimetric Analysis coupled with Fourier transform infrared spectroscopy. The fire residues were investigated via elemental analysis und solid-state nuclear magnetic resonance spectroscopy. The morphology of intumescent fire residues was investigated via micro-computed tomography and scanning electron microscopy. EP + (MPZnP + MPP) formed a highly voluminous residue that showed structural features of both EP + MPZnP and EP + MPP, resulting in a highly effective protection layer. EP + (MPZnP + AlO(OH)) preserved the entire quantity of phosphorus content during combustion due to the Formation of Zn₂P₂O₇ and AlPO₄. KW - Melamine poly(metal phosphate) KW - Flame retardancy KW - Epoxy resin KW - Solid-state NMR KW - Micro-computed tomography KW - Fire residue PY - 2016 DO - https://doi.org/10.1016/j.polymdegradstab.2016.06.023 SN - 0141-3910 VL - 130 SP - 307 EP - 319 PB - Elsevier AN - OPUS4-36863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morys, Michael A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Facing hellfire – Ceramifying coatings for extreme conditions N2 - From halogenated flame retardants to non-halogenated to nanocomposites, each milestone in flame retardancy research led to an increase in performance and safety. With the rise of ceramic precursors in flame retardants, a new field of applications in extreme fire scenarios has become accessible. Intumescent coatings combined with precursors for ceramics show a high temperature transition to a ceramic foam, which provides much better fire resistance than conventional coatings at temperatures beyond 1200°C. Even a protection at 2000 °C for several minutes can be achieved. Combining the expansion property of traditional intumescent coatings with a ceramification at high temperatures leads to high-performance coatings, whose unique properties may prove useful for emergency insulation systems for re-entry bodies in the aerospace industry or special fire protection applications. In this study, the protection performance in extreme fire conditions, the development of the expansion and the following ceramic transition of a high-performance coating are investigated. To this end, a small scale high-performance burner setup was created. The coated (2.5/4 mm) steel plates (75 x 75 x 2 mm) were exposed to direct flame treatment of a propane-oxygen-burner controlled by two flow controllers. During the test, temperatures above of 1800 °C were reached and steel and flame temperature were recorded. Fire tests of different durations (1, 2.5, 5, 10 and 20 min) were performed. The residues of the different development stages were analysed with non-destructive µ-computed tomography and scanning electron microscopy. The 3D images of the computed tomography provide an insight into the developing cell structure and state of ceramification of the residues. T2 - Flame 2018, 29th Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials CY - Stamford, CT, USA DA - 20.05.2018 KW - Ceramifying coating KW - Intumescent coating KW - Fire resistance KW - High-performance burner KW - Bench-scale fire testing PY - 2018 AN - OPUS4-45130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -