TY - CONF A1 - Grager, J.-C. A1 - Kotschate, Daniel A1 - Gamper, J. A1 - Gaal, Mate A1 - Pinkert, K. A1 - Mooshofer, H. A1 - Goldammer, M. A1 - Grosse, C. U. T1 - Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts N2 - Air-coupled ultrasound (ACU) is increasingly used for automated and contactless inspection of large-scale composite structures as well as for non-destructive testing (NDT) of water-sensitive or porous materials. The major challenge to overcome using ACU in NDT is the enormous loss of ultrasonic energy at each solid-air interface caused by the high acoustic impedance mismatch. Resonant low-frequency piezoceramic transducers are specially designed to achieve high sound pressure levels. For an expanded use of this technique, however, the spatial resolution needs to be increased. Recent studies of our collaborative research group demonstrated the successful application of a resonance-free, highly sensitive receiver that uses a Fabry-Pérot etalon instead of piezoceramic materials or membranes. However, to reach the full potential of this broadband small-aperture optical microphone, novel transmitter concepts have to be developed and evaluated for advanced NDT applications. Different types of transmitter were tested in combination with the optical microphone acting as receiver and they were compared to conventional piezoceramic transducers in through-transmission mode. Monolithic carbon fiber-reinforced plastics (CFRP) and CFRP sandwich structures containing different defect types were inspected. Presented results are processed as C-scan images and further evaluated for spatial resolution, signal-to-noise ratio and sensitivity of each measurement setup. Novel transmitter concepts, such as ferroelectret and thermoacoustic emitters, show promising findings with a considerably improved time and spatial resolution for ACU-NDT. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Air-coupled ultrasonic testing KW - Optical microphone KW - Thermoacoustic KW - Cellular polypropylene KW - Ferroelectret KW - Transducer PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-452114 SP - ECNDT-0166-2018, 1 EP - 10 AN - OPUS4-45211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mooshofer, H. A1 - Boehm, Rainer A1 - Heinrich, W. A1 - Fendt, K. A1 - Goldammer, M. A1 - Kolk, K. A1 - Vrana, J. T1 - Amplitudenbasierte Fehlergrößenbewertung mit SAFT: Auf dem Weg von der bildlichen Darstellung zum Messverfahren N2 - Die Größenbewertung von Anzeigen und die Bestimmung der Nachweisgrenze spielen bei der Ultraschallprüfung eine zentrale Rolle: Sie stellen sicher, dass kritische Ungänzen erfasst und bruchmechanisch behandelt werden können. Bei SAFT wurde bisher die Größe von Ungänzen dadurch bestimmt, dass die räumliche Anzeigenausdehnung im Rekonstruktionsergebnis ausgewertet wird, d.h. die Anzahl von Voxel über die sich eine Anzeige erstreckt. Auf diese Weise lassen sich jedoch nur Defektanzeigen bewerten, die größer oder gleich der Wellenlänge sind. Bei kleinen Defekten versagt diese Methode, d.h. es ist keine Größenbewertung möglich. Außerdem bietet diese Methode keine Aussage über die Nachweisgrenze des Verfahrens. Ein Hauptvorteil von SAFT gegenüber der konventionellen Ultraschallprüfung ist aber gerade die Verbesserung der Nachweisgrenze, denn SAFT steigert das Signal-Rausch-Verhältnis (SNR) gegenüber dem Gefügerauschen und reduziert statistisches Rauschen. Um diesen Hauptvorteil nutzen (und quantifizieren) zu können, wird für SAFT eine Methode zur Nachweisgrenzenbestimmung und zur Größenbewertung der Anzeigen kleiner Ungänzen benötigt. Neben ihrer räumlichen Ausdehnung lassen sich Anzeigen im SAFT-Ergebnis auch durch ihre Amplitude charakterisieren, wenn die Prüfkopfeigenschaften und die geometrischen Verhältnisse beim Scan berücksichtigt werden. Genauer gesagt durch die Amplitudensumme, in die - neben der Echoamplitude - auch die winkelabhängige Streucharakteristik eingeht. Im Folgenden wird dargelegt, dass sich die Amplitudensumme zur Nachweisgrenzenbestimmung und zur Größenbewertung kleiner Ungänzen eignet. Es wird der Zusammenhang zwischen der Amplitudensumme und der Größe von Ungänzen dargestellt, und es wird gezeigt, dass auch die Anzeigenposition und die Form des Prüfobjektes eine Rolle spielen können. Auf dieser Basis wird eine Methode zur Größenbestimmung kleiner Anzeigen im SAFT-Ergebnis entwickelt. Damit lässt sich das SAFT-Ergebnis als Ersatzfehlergröße darstellen, so wie das bei konventioneller Ultraschallprüfung z.B. mit Hilfe von AVG-Diagrammen erfolgt. Durch die Vervollständigung um die Größenbewertung ist SAFT nicht mehr nur ein bildgebendes Verfahren, sondern es kann vielmehr als vollwertiges Messverfahren dienen. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Synthetic aperture focussing technique (SAFT) KW - Defektgrößenbewertung KW - Gewichtete Amplitudensumme KW - Kleine Reflektoren PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-411571 SN - 978-3-940283-85-6 VL - 162 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-41157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bente, Klaas A1 - Rus, J. A1 - Mooshofer, H. A1 - Gaal, Mate A1 - Grosse, C.U. T1 - Broadband air-coupled ultrasound emitter and receiver enable simultaneous measurement of thickness and speed of sound in solids N2 - Air-coupled ultrasound sensors have advantages over contact ultrasound sensors when a sample should not become contaminated or influenced by the couplant or the measurement has to be a fast and automated inline process. Thereby, air-coupled transducers must emit high-energy pulses due to the low air-to-solid power transmission ratios (10−3 to 10−8). Currently used resonant transducers trade bandwidth—a prerequisite for material parameter analysis—against pulse energy. Here we show that a combination of a non-resonant ultrasound emitter and a non-resonant detector enables the generation and detection of pulses that are both high in amplitude (130 dB) and bandwidth (2 µs pulse width). We further show an initial application: the detection of reflections inside of a carbon fiber reinforced plastic plate with thicknesses between 1.7 mm and 10 mm. As the sensors work contact-free, the time of flight and the period of the in-plate reflections are independent parameters. Hence, a variation of ultrasound velocity is distinguishable from a variation of plate thickness and both properties are determined simultaneously. The sensor combination is likely to find numerous industrial applications necessitating high automation capacity and opens possibilities for air-coupled, single-side ultrasonic inspection. KW - Thermoacoustic emitter KW - Optical microphone KW - Air-coupled ultrasound KW - Local resonance KW - Thickness measurement KW - Thickness resonance PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569533 VL - 23 IS - 3 SP - 1379 PB - MDPI AN - OPUS4-56953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rus, J. A1 - Gustschin, A. A1 - Mooshofer, H. A1 - Grager, J.-C. A1 - Bente, Klaas A1 - Gaal, Mate A1 - Pfeiffer, F. A1 - Grosse, C. U. T1 - Qualitative comparison of non-destructive methods for inspection of carbon fiber-reinforced polymer laminates N2 - In the rapidly expanding composite industry, novel inspection methods have been developed in recent years. Particularly promising for air-coupled testing are cellular polypropylene transducers which offer better impedance matching to air than piezoelectric transducers. Furthermore, broadband transmitters (laser-induced ultrasound and thermoacoustic emitters) and receivers (optical microphones) have opened a completely new chapter for advanced contact-free ultra-sound inspection. X-ray dark-field radiography offers a different approach to detect porosity and microcracks, employing small angle X-ray scattering. These innovative ultrasonic and radiographic alternatives were evaluated in comparison with well-established inspection techniques. We applied thirteen different non-destructive methods to inspect the same specimen (a carbon fiber-reinforced polymer laminate with induced impact damage): air-coupled ultrasound testing (using piezoelectric transducers, broadband optical microphones, cellular polypropylene transducers, and a thermoa- coustic emitter), laser-induced ultrasound testing, ultrasonic immersion testing, phased array ultrasonic testing, optically excited lock-in thermography, and X-ray radiography (projectional absorption and dark-field, tomosynthesis, and micro-computed tomography). The inspection methods were qualitatively characterized by comparing the scan results. The conclusions are advantageous for a decision on the optimal method for certain testing constraints. KW - Carbon fiber-reinforced polymer KW - Air-coupled ultrasound KW - Optically excited lock-in thermography KW - X-ray micro-computed tomography KW - X-ray dark-field radiography PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509473 SN - 0021-9983 VL - 54 IS - 27 SP - 4325 EP - 4337 PB - SAGE AN - OPUS4-50947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -