TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, R. A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 SP - 1 EP - 9 AN - OPUS4-57836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Knobloch, Tim A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Concepts for bridging voids in metal additive manufacturing for repair of gas turbine blades using laser powder bed fusion N2 - One of the main advantages of additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) is the possibility to manufacture complex near-net-shape components. Therefore, the PBF-LB/M process is becoming increasingly important for the manufacturing and repair of gas turbine blades. Despite the great freedom in design, there are also limitations to the process. Manufacturing overhangs or bridging voids are some of the main challenges. In the conventional PBF-LB/M process, overhangs with angles up to 45° can be manufactured. However, gas turbine blades feature voids for cooling, which have to be bridged when using PBF-LB/M. In this work, different concepts for bridging voids are developed for future application in gas turbine blade repair. For this purpose, a test geometry is derived from the tip area of a gas turbine blade as a reference. By changing the initial geometry of the reference body, different designs for bridging voids are developed based on the PBF-LB/M requirements. Subsequently, these distinct designs are manufactured by PBF-LB/M. The different approaches are compared with respect to their volume increase. In addition, the specimens are visually inspected for warpage, shrinkage and imperfections by overheating. Out of the seven concepts developed, three concepts can be recommended for gas turbine blade repair based on low volume increase, distortion and shrinkage. T2 - Metal Additive Manufacturing Conference - MAMC 2022 CY - Graz, Austria DA - 26.09.2022 KW - Repair of gas turbine blades KW - Laser Powder Bed Fusion (PBF-LB/M) KW - Selective Laser Melting (SLM) KW - Design for Additive Manufacturing (DfAM) KW - Bridging voids KW - Supportless PY - 2022 SP - 19 EP - 28 PB - TU Graz CY - Graz AN - OPUS4-55868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Knobloch, Tim A1 - Altenburg, Simon A1 - Recknagel, Sebastian A1 - Bettge, Dirk A1 - Hilgenberg, Kai T1 - Process Induced Preheating in Laser Powder Bed Fusion Monitored by Thermography and Its Influence on the Microstructure of 316L Stainless Steel Parts N2 - Undetected and undesired microstructural variations in components produced by laser powder bed fusion are a major challenge, especially for safety-critical components. In this study, an in-depth analysis of the microstructural features of 316L specimens produced by laser powder bed fusion at different levels of volumetric energy density and different levels of inter layer time is reported. The study has been conducted on specimens with an application relevant build height (>100 mm). Furthermore, the evolution of the intrinsic preheating temperature during the build-up of specimens was monitored using a thermographic in-situ monitoring set-up. By applying recently determined emissivity values of 316L powder layers, real temperatures could be quantified. Heat accumulation led to preheating temperatures of up to about 600 °C. Significant differences in the preheating temperatures were discussed with respect to the individual process parameter combinations, including the build height. A strong effect of the inter layer time on the heat accumulation was observed. A shorter inter layer time resulted in an increase of the preheating temperature by more than a factor of 2 in the upper part of the specimens compared to longer inter layer times. This, in turn, resulted in heterogeneity of the microstructure and differences in material properties within individual specimens. The resulting differences in the microstructure were analyzed using electron back scatter diffraction and scanning electron microscopy. Results from chemical analysis as well as electron back scatter diffraction measurements indicated stable conditions in terms of chemical alloy composition and austenite phase content for the used set of parameter combinations. However, an increase of the average grain size by more than a factor of 2.5 could be revealed within individual specimens. Additionally, differences in feature size of the solidification cellular substructure were examined and a trend of increasing cell sizes was observed. This trend was attributed to differences in solidification rate and thermal gradients induced by differences in scanning velocity and preheating temperature. A change of the thermal history due to intrinsic preheating could be identified as the main cause of this heterogeneity. It was induced by critical combinations of the energy input and differences in heat transfer conditions by variations of the inter layer time. The microstructural variations were directly correlated to differences in hardness. KW - Additive manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Heat accumulation KW - Inter layer time KW - Cellular substructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529240 DO - https://doi.org/10.3390/met11071063 VL - 11 IS - 7 SP - 1063 PB - MDPI CY - Basel, Schweiz AN - OPUS4-52924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586558 DO - https://doi.org/10.2351/7.0001080 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 AN - OPUS4-58655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. KW - Selective laser beam melting KW - Thermography KW - Melt pool depth KW - Inter layer time KW - Ppreheating temperature KW - Additive Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512549 DO - https://doi.org/10.1016/j.procir.2020.09.030 VL - 94 SP - 155 EP - 160 PB - Elsevier B.V. AN - OPUS4-51254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khan, K. A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - De, A. T1 - Probing a novel heat source model and adaptive remeshing technique to simulate laser powder bed fusion with experimental validation N2 - A finite element method based three-dimensional heat transfer model with adaptive remeshing is presented to simulate the building of multiple tracks and layers in laser powder bed fusion of metallic powders with enhanced computational competence. A dimensional analysis is undertaken to define the heat source dimensions as function of laser parameters and properties of alloy powder. The computational model is used to calculate the melt pool cross sections for multiple combinations of laser power and scanning velocities considering multi-track-multi-layer builds of SS316L powder. The computed results are verified extensively with the corresponding experimentally measured ones. The model is utilized further to examine its ability to predict defects such as melt track discontinuity and incomplete fusion between neighboring tracks and layers. Overall, the adaptive remeshing and the proposed heat source expression could significantly enhance the model competence by reducing the computational time and memory while maintaining the accuracy of results in simulating laser powder bed fusion of multiple tracks and layers. KW - Selective laser melting (SLM) KW - Laser powder bed fusion (L-PBF) KW - Adaptive remeshing KW - SS316L alloy KW - Pool dimensions KW - Melt pool defects PY - 2020 DO - https://doi.org/10.1016/j.commatsci.2020.109752 VL - 181 SP - 109752 PB - Elsevier B. CY - Amsterdam AN - OPUS4-50703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -