TY - JOUR A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Schimanski, A. A1 - Jäger, Christian A1 - Friedrich, Jörg Florian T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes N2 - Mixtures of hexamethyldisiloxane (HMDSO) and oxygen have been used for deposition of SiO2-like layers by plasma polymerization under low-pressure conditions onto polyethylene and polystyrene used as basecoat. Water glass was cast onto these 0.5 µm plasma thick siloxane-like layers with a thickness of 5 to 40 µm. The adhesion of these bilayer systems and their flame resistance were tested. The effect of different plasma parameters such as monomer/gas ratio, pressure and power input into the discharge on the deposition rate and the composition of the formed layers was studied. Characterization and chemical composition of the formed films were performed using infrared, X-ray photoelectron and solid state nuclear magnetic resonance spectroscopy. Peel strengths of composites were measured and the locus of peel front propagation was detected. Thermal properties of composites were analyzed by thermo-gravimetric analysis. Finally, the fire-retardant properties of thick coated polymers were determined by exposure to flames and the behavior of coatings on the polymers during flaming was observed visually. KW - Plasma polymerization KW - Hexamethyldisiloxane plasma polymer KW - Polystyrene KW - Polyethylene KW - Flame retardancy PY - 2013 U6 - https://doi.org/10.1016/j.surfcoat.2013.04.039 SN - 0257-8972 VL - 228 SP - 266 EP - 274 PB - Elsevier B.V. CY - Lausanne AN - OPUS4-28735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -