TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis for AM Materials N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Integrated Additive Manufacturing center, Politecnico Torino CY - Turin, Italy DA - 14.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction PY - 2023 AN - OPUS4-57047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D Shape Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density < 1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of particle’s intrinsic porosity as well as the packing density of micrometric powder used for LBM have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti-6Al-4V produced by plasma atomization and Stainless Steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles are comparable in size according to the equivalent diameter. The packing density is lower (i.e. the powder bed contains more voids in between particles) for the Ti-6Al-4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurements techniques, proved agreement. T2 - User Meeting HZB 2018 CY - Berlin, BESSY II DA - 06.12.2018 KW - BAMline KW - Computed tomography KW - Laser beam melting KW - Powder PY - 2018 AN - OPUS4-46933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Manabaev, K. A1 - Panin, A. A1 - Sjöström, W. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting N2 - Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. KW - Electron beam melting KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531595 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Oesch, Tyler A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Rachmatulin, Natalia A1 - Fontana, Patrick T1 - Evaluation of fiber orientation in a composite and its effect on material behavior N2 - The reinforcement of concrete with polymer fibers provides resistance to crack formation. The orientation distribution of these fibers has a significant influence on the mechanical behavior of the material. To optimize material performance, micromechanical models that are capable of making accurate predictions of the mechanical behavior of composite materials are needed. These models must be calibrated using experimental results from microstructural characterization. For the fiber orientation distribution analysis in the present study, computed tomography (CT) data were used to evaluate the properties of a fiber-reinforced cement mortar. The results have indicated that the fibers in this material have highly anisotropic orientation characteristics and that there is a clear tendency for the polymer fibers to agglomerate during mixing and casting. The incorporation of this experimental data into micromechanical models will increase the accuracy of those models for material simulation and optimization. T2 - iCT 2017 CY - Leuven, Belgium DA - 07.02.2017 KW - Computed tomography KW - Fibre reinforced concrete KW - Orinentation distribution PY - 2017 AN - OPUS4-39137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Oesch, Tyler A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Rachmatulin, Natalia A1 - Fontana, Patrick A1 - Sevostianov, I. T1 - Evaluation of fiber orientation in a composite and its effect on material behavior N2 - The reinforcement of concrete with polymer fibers provides resistance to crack formation. The orientation distribution of these fibers has a significant influence on the mechanical behavior of the material. To optimize material performance, micromechanical models that are capable of making accurate predictions of the mechanical behavior of composite materials are needed. These models must be calibrated using experimental results from microstructural characterization. For the fiber orientation distribution analysis in the present study, computed tomography (CT) data were used to evaluate the properties of a fiber-reinforced cement mortar. The results have indicated that the fibers in this material have highly anisotropic orientation characteristics and that there is a clear tendency for the polymer fibers to agglomerate during mixing and casting. The incorporation of this experimental data into micromechanical models will increase the accuracy of those models for material simulation and optimization. T2 - 7th Conference on Industrial Computed Tomography (iCT 2017) CY - Leuven, Belgium DA - 07.02.2017 KW - Orientation distribution KW - Fiber-reinforced concrete KW - Computed tomography PY - 2017 UR - http://www.ndt.net/?id=20818 SN - 1435-4934 VL - 22 IS - 3 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-39338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Rachmatulin, Natalia A1 - Fontana, Patrick A1 - Oesch, Tyler A1 - Bruno, Giovanni A1 - Radi, E. A1 - Sevostianov, I. T1 - Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite N2 - This paper focuses on the experimental evaluation of one of the key microstructural Parameters of a short-fiber reinforced composite – the orientation distribution of fibers. It is shown that computed tomography (CT) produces results suitable for reconstruction of the orientation distribution function. This function is used for calculation of the effective elastic properties of polymer-fiber reinforced concrete. Explicit formulas are derived for overall elastic moduli accounting for orientation distribution in the frameworks of the noninteraction approximation, the Mori–Tanaka–Benveniste scheme, and the Maxwell scheme. The approach illustrated can be applied to any kind of composite material. KW - Computed tomography KW - Orientation distribution KW - Effective properties KW - Fiber-reinforced composite PY - 2018 U6 - https://doi.org/10.1016/j.ijengsci.2017.10.002 SN - 0020-7225 SN - 1879-2197 VL - 122 SP - 14 EP - 29 PB - Elsevier AN - OPUS4-42814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mishurova, Tatiana T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Additive manufacturing technologies provide unique possibilities in the production of topologically optimized, near-net shape components. The main limiting factors affecting the structural integrity of Laser Powder Bed Fusion (LPBF) parts are manufacturing defects and residual stress (RS) because both of them are virtually inevitable. Taking into account the complex thermal history of LPBF materials, a prediction of the material behavior is not possible without experimental data on the microstructure, defect distribution, and RS fields. Therefore, this thesis aims to understand the factors that influence the LPBF Ti-6Al-4V material performance the most, covering both the production and the post-processing steps of manufacturing. Indeed, a parametric study on the influence of manufacturing process and post-processing on RS, defects and microstructure was performed. It was found that the volumetric energy Density (EV), commonly used for the LPBF process optimization, does neither consider the pore shapes and distribution, nor the influence of individual parameters on the volume fraction of pores. Therefore, it was recommended not to use EV without great care. It was shown that the Position on the base plate has a great impact on the amount of RS in the part. The micromechanical behavior of LPBF Ti-6Al-4V was also studied using in-situ Synchrotron X-ray diffraction during tensile and compression tests. Diffraction elastic constants (DEC), connecting macroscopic stress and (micro) strain, of the LPBF Ti-6Al-4V showed a difference from the DEC of conventionally manufactured alloy. This fact was attributed to the peculiar microstructure and crystallographic texture. It was therefore recommended to determine experimentally DECs whenever possible. Low Cycle Fatigue (LCF) tests at a chosen operating temperature were performed to evaluate the effect of post-treatment on the mechanical performance. Through the information on the microstructure, the mesostructure, and the RS, the LCF behavior was (indirectly) correlated to the process parameters. It was found that the fatigue performance of LPBF samples subjected to hot isostatic pressing is similar to that of hot-formed Ti-6Al-4V. The tensile RS found at the surface of LPBF as-built samples decreased the fatigue life compared to the heat-treated samples. The modification of the microstructure (by heat treatment) did not affect the Fatigue performance in the elastic regime. This shows that in the absence of tensile RS, the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Computed tomography PY - 2021 SP - 1 EP - 143 CY - RWTH Aachen AN - OPUS4-54389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Rehmer, Birgit T1 - Influence of residual stress and microstructure on mechanical performance of LPBF TI-6AL-4V N2 - Ti-6Al-4V alloy is intensively used in the aerospace industry because of its high specific strength. However, the application of Laser Powder Bed Fusion (LPBF) Ti-6Al-4V alloy for structurally critical load-bearing components is limited. One of the main limiting factors affecting the structural integrity, are manufacturing defects. Additionally, the high cooling rates associated with LPBF process result in the formation of large residual stress (RS) with complex fields. Such RS can cause cracking and geometrical distortions of the part even right after production. Also, the microstructure of LPBF Ti-6Al-4V in the as-built condition is significantly different from that of the conventionally produced alloy. All these factors affect the mechanical behavior of the material. Therefore, to improve the material performance it is important to evaluate the individual effect of RS, defects, and microstructure on fatigue life. To this aim Ti-6Al-4V LPBF material in as-built condition and subjected to different post-processing, including two heat treatments (for stress relief and microstructural modification) and Hot Isostatic Pressing (HIP, for densification), were investigated. Prior to Low Cycle Fatigue (LCF) tests at operating temperature (300°C), the microstructure (phases, crystallographic texture, and grain morphology), the mesostructure (defect shape and distribution), and subsurface RS on the LCF samples were investigated. It was found that the fatigue performance of HIPped samples is similar to that of conventionally produced Ti-6Al-4V. The tensile RS found at the surface of as-built samples decreased the fatigue life compared to heat-treated samples. Additionally, the modification of the microstructure (by heat treatment) did not affect the fatigue performance in the regime of mostly elastic strain. This shows that in the absence of tensile RS the manufacturing defects solely control the failure of LPBF components and densification has the strongest effect on the improvement of the mechanical performance. T2 - ASTM ICAM 2020 CY - Online meeting DA - 16.11.2020 KW - Additive manufacturing KW - Ti-6Al-4V KW - Computed tomography KW - Residual stress PY - 2020 AN - OPUS4-51695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trofimov, A. A1 - Mishurova, Tatiana A1 - Lanzoni, L. A1 - Radi, E. A1 - Bruno, Giovanni A1 - Sevostianov, I. T1 - Microstructural analysis and mechanical properties of concrete reinforced with polymer short fibers N2 - The paper focuses on the development of a methodology for quantitative characterization of a concrete containing polymer fibers and pores. Computed tomography (CT) characterization technique is used to provide input data for Finite Element Method (FEM) simulations and analytical modeling based on micromechanical homogenization via the compliance contribution tensor formalism. Effective elastic properties of reinforced concrete are obtained experimentally using compression testing, analytically in the framework of Non-Interaction approximation and numerically performing direct FEM simulations on specimen with reconstructed microstructure. It is shown that CT produces results suitable for implementation in numerical and analytical models. The results of analytical and numerical modeling are in a good agreement with experimental measurements providing maximum discrepancy of ∼ 2.5%. KW - Reinforced concrete KW - Computed tomography KW - Finite element method KW - Micromechanics KW - Homogenization PY - 2018 U6 - https://doi.org/10.1016/j.ijengsci.2018.09.009 SN - 0020-7225 SN - 1879-2197 VL - 133 SP - 210 EP - 218 PB - Elsevier AN - OPUS4-46153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -