TY - JOUR A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Detection of reinforcement corrosion in reinforced concrete structures by potential mapping: Theory and practice N2 - Electrochemical potential mapping according to guideline B3 of DGZfP (German Society for Nondestructive Testing) is a recognized technique for the localization of corroding reinforcing steels. In reinforced concrete structures the measured potentials are not necessarily directly linked to the corrosion likelihood of the reinforcing steel. The measured values may be significantly affected, different from, e.g., stress measurement, by different influences on the potential formation at the phase boundary metal/concrete itself as well as the acquisition procedure. Due to the complexity of influencing factors there is a risk that the results are misinterpreted. Therefore, in a training concept firstly the theoretical basics of the test method should be imparted. Then, frequently occurring practical situations of various influencing factors will be made accessible to the participants by a model object specially designed for this purpose. The aim is to impart profound knowledge concerning the characteristics of potential mapping for detecting corrosion of reinforcing steel in order to apply this technique in practice as reliable and economical test method. KW - Corrosion KW - Potential mapping KW - Korrosion KW - Potentialfeldmessung PY - 2018 DO - https://doi.org/10.1155/2018/3027825 SN - 1687-9333 SN - 1687-9325 VL - 2018 SP - Article 3027825, 1 EP - 6 PB - Hindawi AN - OPUS4-46206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Investigation of the salinization of steel surfaces in marine environment N2 - The salinization and contamination of metal surfaces by chloride-containing aerosols is of great importance with regard to corrosion phenomena of damaged coated metal surfaces and stainless steels in the maritime sector and in offshore applications. Detailed questions have to be answered to clarify whether and to what extent salinization of the surface has an influence on the adhesion and durability of coatings in repairing applications and on pitting occurrence on stainless steels under atmospheric conditions. The questions arise which degree of salinization is reached after which period of time and how a defined and reproducible salinization can be simulated in the laboratory for further systematic investigations. The article is dedicated to these questions. Results of a field trial on the Island of Heligoland are presented and a simple procedure for a defined loading of metal surfaces with chlorides at a laboratory scale using a design of experiments (DoE) approach is introduced. KW - Maritime Atmosphäre KW - Versalzung KW - Maritime atmosphere KW - Salinization PY - 2018 DO - https://doi.org/10.1002/maco.201810636 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 6 SP - 1016 EP - 1025 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-47727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -