TY - JOUR A1 - Mietz, Jürgen A1 - Fischer, Joachim A1 - Isecke, Bernd T1 - Spannungsrißkorrosion an Spannstählen JF - Materials and corrosion N2 - Im Rahmen einer Bauwerksuntersuchung an einer in nachträglicher Verbundbauweise hergestellten Brücke wurden Anrisse an Spannstählen der Quervorspannung festgestellt, ohne daß Verpreßmängel oder korrosionsfördernde Substanzen vorlagen. Bei dem verwendeten Werkstoff handelt es sich um einen in der ehemaligen DDR hergestellten vergüteten Stahl der Festigkeitsklasse St 140/160. Ursache für die Anrisse ist die in Laborversuchen nachgewiesene Empfindlichkeit dieses Stahles gegenüber wasserstoffinduzierter Spannungsrißkorrosion, die unter ungünstigen Bedingungen dazu führen kann, daß Vorschädigungen vor dem Verpressen eintreten. Zusätzlich durchgeführte Magnetpulverprüfungen an ausgewählten Bereichen der Längsvorspannung ergaben keinerlei Hinweise auf Anrisse. Translated Abstract Stress corrosion cracking of prestressing steels During the investigation of a post-tensioned bridge structure incipient cracks of the prestressing steels of the transverse prestressed members were observed. Defects related to non-injected ducts or the presence of corrosion inducing substances could not be detected. The prestressing steel used is a quenched and tempered steel, strength class St 140/160, which was produced in the former GDR. The cause for the cracks is the susceptibility of this type of steel to hydrogen-induced stress corrosion cracking as could be shown in laboratory tests. Under unfavourable conditions cracks can be initiated before grouting. Additional magnetic particle tests at selected areas of the longitudinal prestressed members did not indicate any signs for incipient cracks. KW - Corrosion PY - 1999 SN - 0947-5117 SN - 1521-4176 VL - 50 IS - 9 SP - 535 EP - 540 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-831 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mietz, Jürgen T1 - Investigations on hydrogen-induced embrittlement of quenched and tempered prestressing steels JF - Materials and corrosion N2 - In Germany in recent years failures of more than 30-year-old prestressed concrete structures have been observed. In all these cases a quenched and tempered steel type, strength class St. 1420/1570 was used. In order to assess the corrosion risk, i.e. crack initiation and propagation, under depassivating conditions lifetime tests in environments relevant for building practice were carried out using different prestressing steels of this quenched and tempered type of material. From the results it can be concluded that the specific susceptibility of certain prestressing steels is the determining factor with respect to the occurrence of cracks rather than environmental factors. Translated Abstract Untersuchungen zum wasserstoffinduzierten Sprödbruch vergüteter Spannstähle In den letzten Jahren ist es verschiedentlich zu Schadensfällen von Spannbetonbauteilen gekommen, bei denen vergüteter Spannstahl der Festigkeitsklasse St 1420/1570 eingesetzt war. Durch systematische Untersuchungen an verschiedenen Typen dieser Stahlsorte sollte geklärt werden, ob unter depassivierenden Bedingungen Rißeinleitung und -ausbreitung unter praxisnahen Verhältnissen zu erwarten ist. Die durchgeführten Untersuchungen lassen folgern, daß die spezifische Anfälligkeit des Spannstahls für das Auftreten von Rissen einen wesentlich höheren Einfluß besitzt als die elektrolytseitigen Parameter, da sich die verschiedenen Stähle auch bei vergleichbaren Korrosionsangriffen unterschiedlich verhalten. KW - Prestressing steels KW - Corrosion PY - 2000 DO - https://doi.org/10.1002/(SICI)1521-4176(200002)51:2<80::AID-MACO80>3.0.CO;2-A SN - 0947-5117 SN - 1521-4176 N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 51 IS - 2 SP - 80 EP - 90 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-807 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mietz, Jürgen A1 - Burkert, Annette A1 - Burkert, Andreas A1 - Eich, Gerd T1 - Investigations on the protection effect of filling materials for post-tensioning systems under construction conditions JF - Materials and corrosion N2 - About the long-term protection behaviour of corrosion protection materials (filling materials) for prestressed systems under critical environmental conditions is only little known. The corrosion protection effect is usually based on theoretical considerations and is proven by short-term tests. The selection of the different products is mainly made according to economical or workability criteria. In a research project the barrier effect of different commercial corrosion protection materials (waxes as well as oil-based greases) against water, their tendency for undercutting as well as their additional corrosion protection effect were investigated. The exposure tests were carried out with non-stressed as well as stressed prestressing steel specimens which were subjected to critical conditions (condensed water, artificial soil solution, direct soil contact). Parallel to these long-term exposure tests the applicability of different electrochemical techniques and their significance with respect to testing the corrosion protection ability and water absorption was evaluated. Within the project a suitable method for simple testing the performance of corrosion protection materials under real conditions was developed. By means of a small compact cell submicroscopical reactions of the used sensors could be measured. The high sensitivity of this measuring technique enables the detection of degradation processes at thin protection layers. KW - Prestressed systems KW - Corrosion KW - Corrosion protection KW - Electrochemical tests KW - Grease KW - Wax PY - 2006 DO - https://doi.org/10.1002/maco.200603986 SN - 0947-5117 SN - 1521-4176 VL - 57 IS - 11 SP - 843 EP - 851 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-13931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broomfield, J. A1 - Fischer, Joachim A1 - Mietz, Jürgen A1 - Schneck, U. T1 - Case studies JF - Materials and corrosion N2 - In this paper, some quite different survey tasks are described, and it can be seen that corrosion surveys will follow a certain scheme of data acquisition (first NDT measurements, than detailed testing on suspect areas), but the individual scope of on-site measurements may have a vast variety according to the local circumstances, and the interpretation always has to refer to a wider set of information than the data readings only. KW - Corrosion surveys KW - Non-destructive testing KW - Reinforcement KW - Concrete KW - Potential mapping KW - Corrosion PY - 2013 DO - https://doi.org/10.1002/maco.201206649 SN - 0947-5117 SN - 1521-4176 VL - 64 IS - 2 SP - 147 EP - 160 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Investigation of chloride-induced pitting corrosion of steel in concrete by a combination of electrochemical methods with X-ray tomography T2 - EUROCORR 2014 - European corrosion congress N2 - Steel in concrete is protected by the alkaline pore water environment and the resulting formation of a protective passive layer against corrosion. Adverse environmental conditions due to carbonation or chloride ingress can destroy the passive layer on the steel surface. Corrosion processes starting in those areas lead to uniform corrosion or local corrosion like pitting corrosion. In comparison to uniform corrosion pitting corrosion is a form of increased local corrosion and thus leads to a progressive reduction in cross-section of the reinforcing steel. The corrosion products are first absorbed by the pores of the concrete matrix, without causing visible external changes at the concrete surface. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Corrosion KW - Rebar KW - Chloride KW - Pitting corrosion PY - 2014 SN - 978-3-89746-159-8 SP - O-7207, 274-275 AN - OPUS4-31431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Burkert, Andreas A1 - Ebell, Gino A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Mayer, T. A1 - Meier, J. A1 - Mietz, Jürgen A1 - Reichling, K. A1 - Sodeikat, C. T1 - Electrochemical half-cell potential measurements for the detection of reinforcement corrosion T2 - Electrochemical Half-Cell Potential Measurements for the Detection of Reinforcement Corrosion N2 - This specification describes the application of electrochemical half‐cell potential measurements (frequently also called potential mapping) for the detection of reinforcement corrosion in reinforced concrete structures. Areas of corroding reinforcement steel can be located in a nondestructive manner by means of this procedure. Half‐cell potential measurements are used in order to detect chloride‐induced corrosion. However, it is not recommended in order to assess the risk of carbonation‐induced corrosion. For this purpose the determination of the carbonation depth and the concrete cover appear to be more appropriate. The content of this specification exclusively refers to the application of mobile, local variable reference electrodes, which are only placed on the concrete surface while measuring. The technique distinguishes itself thereby from the range of corrosion monitoring systems with stationary installed reference electrodes and sensor systems, respectively, whereby it is possible to continuously track measurements within the area of the installed electrodes. However, these methods are not dealt with in this specification. KW - Monitoring KW - Corrosion KW - Reinforcement PY - 2014 SN - 978-940283-72-6 SP - B 03, 1 EP - 19 PB - DGZfP CY - Berlin AN - OPUS4-40419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poltavtseva, Marina A1 - Ebell, Gino A1 - Mietz, Jürgen T1 - Electrochemical investigations of carbon-based conductive coatings for application as anodes in ICCP systems of reinforced concrete structures JF - Materials and corrosion N2 - Carbon-based conductive coatings are complex composites, consisting of an organic or inorganic binder and conductive carbon components, for application as anodes in impressed current cathodic protection systems of reinforced concrete structures. The electrochemical properties of three coatings at different humidity and in saturated calcium hydroxide solution were studied by electrochemical methods, such as electrochemical impedance measurement, measuring of open circuit potential over time and galvanostatic polarization. The dissolved organic and inorganic carbons in electrolyte solution were quantified by using a photometric method. The structures of the coatings were investigated before and after the electrochemical tests by microscopy and scanning electron microscope/EDX analysis. The results of the electrochemical impedance measurements show that the tested coatings all have a relatively low resistance, which is between 100 and 200 Ω. The binder and the surface porosity influence the degradation behavior of those coatings. Especially the organic binder reacts with the strong alkaline medium under dissolving of organic carbon. KW - Cathodic protection KW - Corrosion KW - Rebar KW - Reinforcement KW - Concrete KW - Potential PY - 2015 DO - https://doi.org/10.1002/maco.201407680 SN - 0947-5117 SN - 1521-4176 VL - 66 IS - 7 SP - 627 EP - 634 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-33709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Poltavtseva, M. A1 - Mietz, Jürgen ED - Ottosen, L. T1 - Electrochemical investigation of carbon-based conductive coatings for application as anodes in ICCP system of reinforced concrete structures T2 - Electrochemistry in Civil Engineering N2 - Carbon-based conductive coatings are complex composites, consisting of an organic or inorganic binder and conductive carbon components, for application as anodes in impressed current cathodic protection systems of reinforced concrete structures. The electrochemical properties of three coatings at different humidity and in saturated calcium hydroxide solution were studied by electrochemical methods, such as electrochemical impedance measurement, measuring of open circuit potential over time and galvanostatic polarization. T2 - International RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016 CY - Lyngby, Denmark DA - 21.08.2016 KW - ICCP KW - Coating KW - Cunductive KW - Corrosion KW - reinforcement KW - Concrete KW - Cathodic protection PY - 2016 SN - 978-2-35158-176-6 SN - 978-2-35158-177-3 VL - Proceedings PRO 111 SP - 43 EP - 46 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-37216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Reinemann, Steffi A1 - Ebell, Gino A1 - Kühne, Hans-Carsten A1 - Mietz, Jürgen T1 - Corrosion of steel reinforcement in geopolymer mortars - carbonation resistance, chloride migration, and preliminary corrosion potential data T2 - EUROCORR 2017 N2 - Alkali-activated materials such as geopolymers are currently receiving a lot of attention because of their potential to be used as binders for concrete with advantageous engineering properties and reduced manufacturing CO2 emissions. Knowledge of the durability of steel in these concretes and related properties of alkali-activated materials is a prerequisite for their application as building materials, if they are to be used for steel reinforced elements. However, to date only limited data exists on this topic. The present contribution focuses on durability-related transport properties of geopolymer-based mortars (as model systems for concrete). We report results of accelerated carbonation, rapid chloride migration (RCM) and air permeability measurements as well as porosity data for fly ash-based geopolymer mortars, including mixes containing ground granulated blast furnace slag (GGBFS). In addition, we report polarization resistance data and corrosion potential vs. time curves for carbon steel bars embedded in two of the fly ash-based geopolymer mortars and a CEM I-based mortar (as reference). Despite comparable total porosities, the carbonation depths, the chloride migration coefficients and the air permeabilities of the mortars differed significantly. In general, the addition of GGBFS to the binders improved the performance (decreased transport coefficients); however, this was not found to be true for the air permeability in all cases. This latter effect can be explained by drying damage of the C-(A-)S-H gel in GGBFS-containing binders. On the other hand, low transport coefficients can also be achieved by optimization of the binder formulation without the addition of GGBFS, which is also reflected in the material’s air permeability. Thus, there exists no simple correlation between air permeability (of harshly dried mortars) and durability-related transport coefficients for the studied alkali-activated materials. The corrosion potential vs. time curves in combination with polarization resistance values reveal that the steel reinforcement in geopolymer mortars assumed a passive state. However, this happened considerably later than for steel in CEM I-based mortars. The free corrosion potential of carbon steel reinforcement in the geopolymer mortars had different values than the free corrosion potential values for the CEM I-based mortar for both the active and the passive state; possible reasons for this behavior are discussed. T2 - EUROCORR 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Geopolymers KW - Alkali-activated materials KW - Corrosion KW - Steel reinforcement KW - Concrete PY - 2017 SP - Paper 87351, 1 EP - 7 AN - OPUS4-41870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Corrosion behavior of galvanized reinforcement in chloride containing mortar and carbonated mortar T2 - Intergalva 2018 N2 - Korrosionseigenschaften von feuerverzinktem Betonstahl unterscheiden sich grundlegend von herkömmlichen Betonstahl. In diesem Vortrag sind Beispiele für das Korrosionsverhalten in chloridhaltigen und carbonatisierten Mörteln dargestellt T2 - Intergalva 2018 - 25th International Galvanizing Conference CY - Berlin, Germany DA - 17.06.2018 KW - Corrosion KW - Korrosion KW - Verzinkt KW - Betonstahl PY - 2018 SP - 301 EP - 309 AN - OPUS4-45240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burkert, Andreas A1 - Müller, Thoralf A1 - Lehmann, Jens A1 - Mietz, Jürgen T1 - Long-term corrosion behaviour of stainless steels in marine atmosphere JF - Materials and Corrosion N2 - Nine different stainless steel alloys were exposed for 5 years under marine environment and their corrosion behaviour was compared and assessed. The investigation of four different surface finishes for all alloys tested further enabled to consider industry-specific features of the surface finish for the material comparison. The results of the exposure tests yield conclusions regarding the influence of alloy composition, surface finish and exposure duration under marine environment. The three duplex stainless steels revealed excellent corrosion resistance even in case of crevices during the 5 years of exposure under the given exposure conditions. Also the molybdenum-alloyed ferritic steel 1.4521 showed good corrosion resistance comparable to the classical austenitic materials 1.4301 and 1.4404. KW - Corrosion KW - Free weathering KW - Marine atmosphere KW - Stainless steels PY - 2018 DO - https://doi.org/10.1002/maco.201709636 SN - 0947-5117 SN - 1521-4176 VL - 69 IS - 1 SP - 20 EP - 28 PB - Wiley-VCH Verlag GmbH & Co KGaA CY - Weinheim AN - OPUS4-43625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Detection of reinforcement corrosion in reinforced concrete structures by potential mapping: Theory and practice JF - International Journal of Corrosion N2 - Electrochemical potential mapping according to guideline B3 of DGZfP (German Society for Nondestructive Testing) is a recognized technique for the localization of corroding reinforcing steels. In reinforced concrete structures the measured potentials are not necessarily directly linked to the corrosion likelihood of the reinforcing steel. The measured values may be significantly affected, different from, e.g., stress measurement, by different influences on the potential formation at the phase boundary metal/concrete itself as well as the acquisition procedure. Due to the complexity of influencing factors there is a risk that the results are misinterpreted. Therefore, in a training concept firstly the theoretical basics of the test method should be imparted. Then, frequently occurring practical situations of various influencing factors will be made accessible to the participants by a model object specially designed for this purpose. The aim is to impart profound knowledge concerning the characteristics of potential mapping for detecting corrosion of reinforcing steel in order to apply this technique in practice as reliable and economical test method. KW - Corrosion KW - Potential mapping KW - Korrosion KW - Potentialfeldmessung PY - 2018 DO - https://doi.org/10.1155/2018/3027825 SN - 1687-9333 SN - 1687-9325 VL - 2018 SP - Article 3027825, 1 EP - 6 PB - Hindawi AN - OPUS4-46206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Müller, Thoralf A1 - Mietz, Jürgen A1 - Burkert, Andreas T1 - Investigation of the influence of iron‐containing abrasives on the corrosion behaviour of the aluminium alloy AlSi1.2Mg0.4 JF - Materials and Corrosion N2 - The corrosion resistance of aluminium surfaces is closely linked to the surfacecstate after a grinding process. For years, iron‐containing abrasive materials were suspected to lead to increased corrosion susceptibility after processing of aluminium surfaces. To prove a possible correlation between the iron content of an abrasive and the corrosion behaviour of aluminium components, scientific investigations and experimentally practical corrosion tests are necessary. For the current investigation, specimens of a technical Al‐Si alloy from the same batch were used. The test specimens were mechanically ground with various resin‐bonded model abrasives containing different iron contents. The performed corrosion tests did not reveal a negative influence of the different iron‐containing abrasives on the corrosion behaviour of the Al–Si alloy. However, the most sensitive measuring method (electrochemical noise) showed differences in the surface activity depending on the type of abrasive. KW - Aluminium KW - Corrosion KW - Corrosion testing KW - Grinding PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506762 DO - https://doi.org/10.1002/maco.202011657 SN - 0947-5117 SN - 1521-4176 VL - 71 IS - 10 SP - 1667 EP - 1679 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ebell, Gino A1 - Achenbach, R. A1 - Angst, U. A1 - Brem, M. A1 - Dauberschmidt, C. A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Mayer, T.F. A1 - Mietz, Jürgen A1 - Pruckner, F. T1 - Merkblatt B 03 - Elektrochmische Potentialmessung zur Detektion von Bewehrungsstahlkorrosion N2 - Die Potentialmessung kann zum Auffinden korrosionsaktiver Bereiche neben Stahlbetonbauwerken auch bei Spannbetonbauwerken angewandt werden, die mit Spannstählen im direkten Verbund hergestellt werden. Bei Vorspannsystemen mit metallischen Hüllrohren im nachträglichen Verbund ist eine Aussage über den Korrosionszustand des Hüllrohrs, nicht aber des Spannstahls möglich. Messungen an Spannbetonbauteilen erfordern grundsätzlich die besonderen Kenntnisse eines Spezialisten. KW - Korrosion KW - Potentialfeldmessung KW - Corrosion KW - Concrete PY - 2021 SN - 978-3-947971-16-9 SP - 1 EP - 22 PB - DGZfP CY - Berlin AN - OPUS4-53091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ebell, Gino A1 - Achenbach, R. A1 - Angst, U. A1 - Dauberschmidt, C. A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Kosalla, M. A1 - Mayer, T.F. A1 - Mietz, Jürgen A1 - Pruckner, F. A1 - Sodeikat, C. T1 - Specification B 12 - Corrosion monitoring in reinforced and prestressed concrete structures N2 - This specification describes how corrosion monitoring is used to check the condition of reinforced and prestressed concrete members. In this specification, the term "corrosion monitoring" covers all methods in which it is possible to continuously track corrosion-relevant variables in the area of stationary, built-in sensors. This specification does not cover other possible methods, such as potential field measurements, involving the use of mobile, portable sensors that are placed temporarily on the membersurface to take measurements. KW - Korrosion KW - Corrosion KW - Monitoring PY - 2021 SN - 978-3-947971-14-5 SP - 1 EP - 55 PB - DGZfP CY - Berlin AN - OPUS4-53092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -