TY - CONF A1 - Ebell, Gino A1 - Poltavtseva, M. A1 - Mietz, Jürgen ED - Ottosen, L. T1 - Electrochemical investigation of carbon-based conductive coatings for application as anodes in ICCP system of reinforced concrete structures T2 - Electrochemistry in Civil Engineering N2 - Carbon-based conductive coatings are complex composites, consisting of an organic or inorganic binder and conductive carbon components, for application as anodes in impressed current cathodic protection systems of reinforced concrete structures. The electrochemical properties of three coatings at different humidity and in saturated calcium hydroxide solution were studied by electrochemical methods, such as electrochemical impedance measurement, measuring of open circuit potential over time and galvanostatic polarization. T2 - International RILEM Conference on Materials, Systems and Structures in Civil Engineering 2016 CY - Lyngby, Denmark DA - 21.08.2016 KW - ICCP KW - Coating KW - Cunductive KW - Corrosion KW - reinforcement KW - Concrete KW - Cathodic protection PY - 2016 SN - 978-2-35158-176-6 SN - 978-2-35158-177-3 VL - Proceedings PRO 111 SP - 43 EP - 46 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-37216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Corrosion behavior of galvanized reinforcement in chloride containing mortar and carbonated mortar T2 - Intergalva 2018 N2 - Korrosionseigenschaften von feuerverzinktem Betonstahl unterscheiden sich grundlegend von herkömmlichen Betonstahl. In diesem Vortrag sind Beispiele für das Korrosionsverhalten in chloridhaltigen und carbonatisierten Mörteln dargestellt T2 - Intergalva 2018 - 25th International Galvanizing Conference CY - Berlin, Germany DA - 17.06.2018 KW - Corrosion KW - Korrosion KW - Verzinkt KW - Betonstahl PY - 2018 SP - 301 EP - 309 AN - OPUS4-45240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Reinemann, Steffi A1 - Ebell, Gino A1 - Kühne, Hans-Carsten A1 - Mietz, Jürgen T1 - Corrosion of steel reinforcement in geopolymer mortars - carbonation resistance, chloride migration, and preliminary corrosion potential data T2 - EUROCORR 2017 N2 - Alkali-activated materials such as geopolymers are currently receiving a lot of attention because of their potential to be used as binders for concrete with advantageous engineering properties and reduced manufacturing CO2 emissions. Knowledge of the durability of steel in these concretes and related properties of alkali-activated materials is a prerequisite for their application as building materials, if they are to be used for steel reinforced elements. However, to date only limited data exists on this topic. The present contribution focuses on durability-related transport properties of geopolymer-based mortars (as model systems for concrete). We report results of accelerated carbonation, rapid chloride migration (RCM) and air permeability measurements as well as porosity data for fly ash-based geopolymer mortars, including mixes containing ground granulated blast furnace slag (GGBFS). In addition, we report polarization resistance data and corrosion potential vs. time curves for carbon steel bars embedded in two of the fly ash-based geopolymer mortars and a CEM I-based mortar (as reference). Despite comparable total porosities, the carbonation depths, the chloride migration coefficients and the air permeabilities of the mortars differed significantly. In general, the addition of GGBFS to the binders improved the performance (decreased transport coefficients); however, this was not found to be true for the air permeability in all cases. This latter effect can be explained by drying damage of the C-(A-)S-H gel in GGBFS-containing binders. On the other hand, low transport coefficients can also be achieved by optimization of the binder formulation without the addition of GGBFS, which is also reflected in the material’s air permeability. Thus, there exists no simple correlation between air permeability (of harshly dried mortars) and durability-related transport coefficients for the studied alkali-activated materials. The corrosion potential vs. time curves in combination with polarization resistance values reveal that the steel reinforcement in geopolymer mortars assumed a passive state. However, this happened considerably later than for steel in CEM I-based mortars. The free corrosion potential of carbon steel reinforcement in the geopolymer mortars had different values than the free corrosion potential values for the CEM I-based mortar for both the active and the passive state; possible reasons for this behavior are discussed. T2 - EUROCORR 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Geopolymers KW - Alkali-activated materials KW - Corrosion KW - Steel reinforcement KW - Concrete PY - 2017 SP - Paper 87351, 1 EP - 7 AN - OPUS4-41870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hlavacek, Petr A1 - Reinemann, Steffi A1 - Gluth, Gregor A1 - Ebell, Gino A1 - Mietz, Jürgen ED - Serdar, M. ED - Stirmer, N. ED - Provis, J. T1 - Behaviour of reinforced alkali-activated fly ash mortars under leaching conditions T2 - Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019), Vol. 1: New Generation of Construction Materials N2 - Corrosion of steel reinforcement in concrete is one of the major deterioration mechanisms limiting the service life of reinforced concrete structures. While for conventional (Portland cement-based) concretes a great amount of experience exists in this regard, the factors that determine the onset of reinforcement corrosion in alkali-activated materials are incompletely understood yet. One aspect of corrosion protection is leaching and the accompanying changes of the concrete pore solution. In the present study, alkali-activated fly ash mortars with embedded carbon steel rebars were exposed to de-ionised water for periods up to 330 days, and the electrochemical response of the steel (free corrosion potential, polarisation resistance), the alteration of the mortar (ohmic resistance, mechanical strength, pore size distribution) as well as the pore solution composition were monitored. Although substantial alkali leaching was observed, the pH of the pore solution remained at values sufficient to protect the embedded steel from depassivation. The mortar did not exhibit indications of significant deterioration. Thus, the present results suggest that leaching is not critical for protection of steel reinforcement in alkali-activated fly ash mortars and concretes. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Alkali-activated materials KW - Steel corrosion KW - Leaching PY - 2019 SN - 978-2-35158-223-7 VL - 1 SP - 118 EP - 124 PB - RILEM Publications CY - Paris AN - OPUS4-47585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -