TY - CONF A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Corrosion behavior of galvanized reinforcement in chloride containing mortar and carbonated mortar N2 - Korrosionseigenschaften von feuerverzinktem Betonstahl unterscheiden sich grundlegend von herkömmlichen Betonstahl. In diesem Vortrag sind Beispiele für das Korrosionsverhalten in chloridhaltigen und carbonatisierten Mörteln dargestellt T2 - Intergalva 2018 - 25th International Galvanizing Conference CY - Berlin, Germany DA - 17.06.2018 KW - Corrosion KW - Korrosion KW - Verzinkt KW - Betonstahl PY - 2018 SP - 301 EP - 309 AN - OPUS4-45240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebell, Gino A1 - Burkert, Andreas A1 - Mietz, Jürgen T1 - Detection of reinforcement corrosion in reinforced concrete structures by potential mapping: Theory and practice N2 - Electrochemical potential mapping according to guideline B3 of DGZfP (German Society for Nondestructive Testing) is a recognized technique for the localization of corroding reinforcing steels. In reinforced concrete structures the measured potentials are not necessarily directly linked to the corrosion likelihood of the reinforcing steel. The measured values may be significantly affected, different from, e.g., stress measurement, by different influences on the potential formation at the phase boundary metal/concrete itself as well as the acquisition procedure. Due to the complexity of influencing factors there is a risk that the results are misinterpreted. Therefore, in a training concept firstly the theoretical basics of the test method should be imparted. Then, frequently occurring practical situations of various influencing factors will be made accessible to the participants by a model object specially designed for this purpose. The aim is to impart profound knowledge concerning the characteristics of potential mapping for detecting corrosion of reinforcing steel in order to apply this technique in practice as reliable and economical test method. KW - Corrosion KW - Potential mapping KW - Korrosion KW - Potentialfeldmessung PY - 2018 U6 - https://doi.org/10.1155/2018/3027825 SN - 1687-9333 SN - 1687-9325 VL - 2018 SP - Article 3027825, 1 EP - 6 PB - Hindawi AN - OPUS4-46206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burkert, Andreas A1 - Lehmann, Jens A1 - Burkert, Annette A1 - Mietz, Jürgen T1 - Damage of stainless steel bars due to atmospheric corrosion N2 - In addition to constructional requirements in civil engineering stainless steels often have to fulfil high visual demands. Unexpected impairments of the visual appearance of stainless steels under low corrosive conditions are a widespread problem today. Frequently it is supposed that this is caused by changes in the alloy composition, worse environmental conditions or improper handling. Within a research project the systematic investigation of several cases of damaged stainless steel bars has shown that the reasons are based on well-known material defects like chemical inhomogeneities (e.g. precipitations or local carburization) or geometrical defects (e.g. undercuts, rolling defects or shell formation). Thus, the failures could be clearly identified as production failures of the respective semi-finished products. KW - Atmospheric corrosion KW - EPR test KW - Failure KW - Intercrystalline corrosion KW - Stainless steel KW - Nichtrostender Stahl KW - Werkstoffauswahl KW - Dauerhaftigkeit KW - Korrosion PY - 2012 U6 - https://doi.org/10.1002/maco.201005701 SN - 0947-5117 SN - 1521-4176 VL - 63 IS - 3 SP - 264 EP - 270 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-25702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -