TY - JOUR A1 - Adam, Christian A1 - Peplinski, Burkhard A1 - Michaelis, Matthias A1 - Kley, Gerd A1 - Simon, Franz-Georg T1 - Thermochemical treatment of sewage sludge ashes for phosphorus recovery N2 - Phosphorus (P) is an essential element for all living organisms and cannot be replaced. Municipal sewage sludge is a carrier of phosphorus, but also contains organic pollutants and heavy metals. A two-step thermal treatment is suggested, including mono-incineration of sewage sludge and subsequent thermochemical treatment of the ashes. Organic pollutants are completely destroyed by mono-incineration. The resulting sewage sludge ashes contain P, but also heavy metals. P in the ashes exhibits low bioavailability, a disadvantage in farming. Therefore, in a second thermochemical step, P is transferred into mineral phases available for plants, and heavy metals are removed as well. The thermochemical treatment was investigated in a laboratory-scale rotary furnace by treating seven different sewage sludge ashes under systematic variation of operational parameters. Heavy metal removal and the increase of the P-bioavailability were the focus of the investigation. The present experimental study shows that these objectives have been achieved with the proposed process. The P-bioavailability was significantly increased due to the formation of new mineral phases such as chlorapatite, farringtonite and stanfieldite during thermochemical treatment. KW - P-recovery KW - Sewage sludge ash KW - Thermochemical treatment KW - Mineral phases KW - X-ray diffraction PY - 2009 U6 - https://doi.org/10.1016/j.wasman.2008.09.011 SN - 0956-053X VL - 29 IS - 3 SP - 1122 EP - 1128 PB - Pergamon Press CY - New York, NY AN - OPUS4-18605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Michaelis, Matthias T1 - Certification of the mass fractions of Pt, Pd and Rh in a used car catalyst reference material N2 - The high economic value of catalysts containing the platinum group elements platinum, rhodium and palladium as active components causes the need to be able to measure the precious metal loading with small uncertainty and to have suitable certified reference materials fulfilling high demands on the quality of the certified values. In European Reference Material ERM®-EB504, a used cordierite-based car catalyst material, mass fractions of platinum, palladium and rhodium were certified. The raw material was milled, homogenised and annealed before analysis. Seventeen laboratories experienced in precious metals analysis participated in the certification interlaboratory comparison, most of them analysing with inductively coupled plasma optical emission spectrometry using different sample pretreatment techniques. Homogeneity testing was carried out using X-ray fluorescence spectrometry. The certified mass fractions of Pt, Pd and Rh and their expanded uncertainties (k = 2) in ERM®-EB504 are (1777 ± 15), (279 ± 6) and (338 ± 4) mg/kg respectively. KW - Precious metals KW - CRM KW - European reference material KW - Platinum KW - Rhodium KW - Palladium KW - ICP OES PY - 2009 U6 - https://doi.org/10.1007/s00769-009-0508-9 SN - 0949-1775 SN - 1432-0517 VL - 14 IS - 5 SP - 277 EP - 280 PB - Springer CY - Berlin AN - OPUS4-19349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Michaelis, Matthias A1 - Kley, Gerd A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - Reaction sequences in the thermochemical treatment of sewage sludge ashes revealed by X-ray powder diffraction - A contribution to the European project SUSAN N2 - The sequence of reactions accompanying the thermochemical treatment of an iron- and aluminium-bearing sewage sludge ash was ascertained by investigating two systematic series of samples. The ash was thermochemically treated in a lab-scale rotary furnace after mixing it with a chlorine-donor, either CaCl2 or MgCl2. Within each of these two sample series only a single process parameter, the reaction temperature, was varied, namely between 350 and 1050°C. It was found, that among the numerous crystalline phases present in the raw ash only quartz and hematite continue to exist after thermochemical treatments carried out at 1050°C, whereas all other components undergo at least one decomposition-recrystallization cycle. Some of the components re-crystallize even several times. It was proved that the restructuring of the calcium- and phosphorus-bearing mineral phases proceeds via the formation of chlorspodioside, Ca2PO4Cl. The influence of the type of chlorine-donor on the final product was elucidated in detail and - to the best of our knowledge - for the first time crystalline AlPO4 was found in a sewage sludge ash and its decomposition was investigated, too. KW - XRD KW - Phosphorus recovery KW - Sewage sludge ash KW - Urban mining KW - Fertilizers PY - 2009 U6 - https://doi.org/10.1524/zksu.2009.0068 SN - 0930-486X VL - 30 EPDIC 2008 SP - 459 EP - 464 PB - Oldenbourg CY - München AN - OPUS4-20562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -