TY - JOUR A1 - Wittmar, J. A1 - Meyer, Susann A1 - Sieling, T. A1 - Kunte, Hans-Jörg A1 - Smiatek, Jens A1 - Brand, Izabella T1 - What Does Ectoine Do to DNA? A Molecular-Scale Picture of Compatible Solute−Biopolymer Interactions N2 - Compatible solutes are accumulated in the cytoplasm of halophilic microorganisms. These molecules enable their survival in a high salinity environment. Ectoine is such a compatible solute. It is a zwitterionic molecule which strongly interacts with surrounding water molecules and changes the dynamics of the local hydration shell. Ectoine interacts with biomolecules such as lipids, proteins and DNA. The molecular interaction between ectoine and biomolecules in particular the interaction between ectoine and DNA is far from being understood. In this paper we describe molecular aspects of the interaction between ectoine and double stranded DNA(dsDNA). Two 20 base pairs long dsDNA fragments were immobilized on a Gold surface via a thiol-tether. The interaction between the dsDNA monolayers with diluted and concentrated ectoine solutions was examined by means of X-ray photoelectron and polarization modulation infrared reflection absorption spectroscopies (PM IRRAS). Experimental results indicate that the ability of ectoine to bind water reduces the strength of hydrogen bonds formed to the ribose-phosphate backbone in the dsDNA. In diluted (0.1 M) ectoine solution, DNA interacts predominantly with water molecules. The sugar-phosphate backbone is involved in the formation of strong hydrogen bonds to water, which with elapsing time leads to a reorientation of the planes of nucleic acid bases. This reorientation destabilizes the hydrogen bonds strength between the bases and leads to a partial dehybridizaiton of the dsDNA. In concentrated ectoine solution (2.5 M), almost all water molecules interact with ectoine. Under this condition ectoine is able to interact directly with DNA. Density functional theory (DFT) calculations demonstrate that the direct interaction involves the nitrogen atoms in ectoine and phosphate groups in the DNA molecule. The results of the quantum chemical calculations Show that rearrangements in the ribose-phosphate backbone, caused by a direct interaction with ectoine, facilitates contacts between O atom in the phosphate group and H atoms in a nucleic acid base. In the PM IRRA spectra, an increase in the number of the IR absorption modes in the base pair frequency region proves that the hydrogen bonds between bases become weaker. Thus, a sequence of reorientations caused by interaction with ectoine leads to a breakdown of hydrogen bonds between bases in the double helix. KW - Compatible solute KW - Ectoine KW - DNA KW - Self-assembled monolayer KW - IR spectroscopy KW - XPS PY - 2020 U6 - https://doi.org/10.1021/acs.jpcb.0c05273 VL - 124 IS - 37 SP - 7999 EP - 8011 PB - ACS Publicatios AN - OPUS4-51182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Susann A1 - Schröter, Astrid-Maria A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Structural changes in plasmid DNA verified by gel electrophoresis and AFM: Sample radiation and damage detection N2 - Many microorganisms possess circular molecules of plasmid DNA. Their conformation may vary from more compact to relaxed forms. Structural changes have important consequences for the physiological role of plasmids and will influence plasmid transcription, replication and their susceptibility to environmental stresses. Radiation is a common form of stress and can cause structural damage to DNA such as single (SSB) and double strand breaks (DSB). Recently, it has been indicated that secondary low-energy electrons play an important role in biological damage under vacuum condition. Therefore, our studies focus on irradiating the plasmid pUC19 with low-energy electrons for the first time under physiological conditions. T2 - AFM BioMed Conference CY - Porto, Portugal DA - 11.04.2016 KW - Irradiation damage KW - Low energy electrons KW - DNA PY - 2016 AN - OPUS4-35835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets N2 - The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1/2=6±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells. KW - DNA KW - Radiation damage KW - Dosimetry KW - DNA radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Low energy electrons KW - Monte Carlo simulation KW - Radiation damage to biomolecules KW - Plasmid DNA in water KW - Lethal dose KW - Solutions (pH, salinity, cosolutes) KW - Geant4 KW - Microdosimetry PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-404244 SN - 2470-0045 SN - 2470-0053 VL - 95 IS - 5 SP - 052419-1 EP - 052419-8 PB - American Physical Society CY - USA AN - OPUS4-40424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Hahn, Marc Benjamin A1 - Solumon, Tihomir A1 - Strum, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine can enhance structural changes in DNA in vitro N2 - Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments. KW - Ectoine KW - DNA KW - UV radiation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-413139 VL - 7 IS - 1 SP - Article 7170, 1 EP - 10 AN - OPUS4-41313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oprzeska-Zingrebe, E. A. A1 - Meyer, Susann A1 - Roloff, Alexander A1 - Kunte, Hans-Jörg A1 - Smiatek, J. T1 - Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects N2 - In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood–Buff theory, we introduce a simple Framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our Computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures. KW - Ectoine KW - DNA KW - Thermodynamic KW - Melting temperature PY - 2018 U6 - https://doi.org/10.1039/c8cp03543a SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 40 SP - 25861 EP - 25874 PB - Royal Society of Chemistry AN - OPUS4-46327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -