TY - CONF A1 - Meyer, Susann A1 - Schröter, Astrid-Maria A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Structural changes in plasmid DNA verified by gel electrophoresis and AFM: Sample radiation and damage detection N2 - Many microorganisms possess circular molecules of plasmid DNA. Their conformation may vary from more compact to relaxed forms. Structural changes have important consequences for the physiological role of plasmids and will influence plasmid transcription, replication and their susceptibility to environmental stresses. Radiation is a common form of stress and can cause structural damage to DNA such as single (SSB) and double strand breaks (DSB). Recently, it has been indicated that secondary low-energy electrons play an important role in biological damage under vacuum condition. Therefore, our studies focus on irradiating the plasmid pUC19 with low-energy electrons for the first time under physiological conditions. T2 - AFM BioMed Conference CY - Porto, Portugal DA - 11.04.2016 KW - Irradiation damage KW - Low energy electrons KW - DNA PY - 2016 AN - OPUS4-35835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Schröter, Maria-Astrid A1 - Sturm, Heinz T1 - Development of a standard procedure for the irradiation of biomolecules N2 - In dosimetry the determination of the effectiveness of the damaging processes is standardized and accounted for by the radiation and tissue weighting factor. For the underlying constituents of the tissue, that is the various biomolecules, such a systematic approach doesn't exist. This makes it difficult to compare results obtained under different experimental conditions. In the following work, we will describe a method to obtain comparable values for the radiation-biomolecule interaction, measured under different conditions. This approach can lead to standardization of dosedamage relationship at the molecular level. Such approach is necessary for a better understanding of the relations between the damage of the single constituents of biological tissue and the whole – finally gaining a more complete picture of irradiation damage. T2 - 14th International Congress of the International Raditation Protection Association (IRPA) CY - Cape Town, South Africa DA - 09.05.2016 KW - Dosimetry PY - 2017 VL - 14 SP - 1 EP - 5 AN - OPUS4-41164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -