TY - CONF A1 - Meyer, Klas A1 - Kraemer, B. A1 - Zientek, Nicolai A1 - Esche, E. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - A robust method for process monitoring of reactive absorption of CO2 in industrial gas streams based on Online-NMR- and Raman spectroscopy T2 - 1. Symposium NMRPM "Quantitative NMR Methods for Reaction and Process Minitorig" CY - Kaiserslautern DA - 2015-01-15 PY - 2015 AN - OPUS4-33135 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Already Producing or Still Calibrating? – Advances of Model-Based Automation for Online NMR Spectroscopy N2 - The transition from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute comparison method”, independent of the matrix, it runs with very short set-up times in combination with “modular” spectral models. These are based on pure component NMR spectra without the need for tedious calibrations runs. We present approaches from statistical, (i.e., Partial Least Squares Regression) to physically motivated models (i.e., Indirect Hard Modelling). Based on concentration measurements of reagents and products by the NMR analyser a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - 2nd Reaction Monitoring Symposium CY - Bath, UK DA - 28.01.2019 KW - Process Analytical Technology KW - NMR Spectroscopy KW - Modular Production PY - 2019 AN - OPUS4-47309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Westerdicky, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com SN - 978-3-9819263-5-4 SP - 615 EP - 620 PB - Research Publishing AN - OPUS4-52180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Meyer, Klas A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Kowarik, Stefan A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com AN - OPUS4-52181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, S. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Grenoble, France DA - 01.02.2021 KW - Industry 4.0, KW - Cyber-physical systems KW - Artificial neural networks KW - Mass spectrometry KW - Nuclear magnetic resonance spectroscopy PY - 2021 DO - https://doi.org/10.23919/DATE51398.2021.9473958 SP - 615 EP - 620 PB - IEEE AN - OPUS4-55360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fricke, F. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Hierzegger, R. A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy KW - Modular Production PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539412 UR - https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9638378 DO - https://doi.org/10.1109/TETC.2021.3131371 SN - 2168-6750 VL - 10 IS - 1 SP - 87 EP - 98 PB - IEEE AN - OPUS4-53941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas T1 - Atomkerne zählen - Quantitative NMR-Spektroskopie als vielseitige Methode in Labor und Prozess N2 - Meist präsentieren sich Laboratorien für NMR-Spektroskopie auf den ersten Blick von außen nur wenig einladend. Es lohnt sich aber einen Blick hinein zu riskieren, denn die Methode ist heute unverzichtbar für die analytische Chemie. Die quantitativen Möglichkeiten werden häufig unterschätzt, erfahren allerdings durch den aufstrebenden Markt kompakter Benchtop-NMR-Spektrometer verstärktes Interesse für Anwendungen von der Laborbank bis hin zum Industrieprozess. KW - NMR-Spektroskopie KW - Benchtop-NMR KW - qNMR PY - 2020 UR - https://analyticalscience.wiley.com/do/10.1002/was.000600052 SN - 0016-3538 VL - 64 IS - 10 SP - 28 EP - 30 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-51464 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Soruco Aloisio, Ricardo A1 - Meyer, Klas A1 - Klaus, Christian T1 - Auf dem Weg zu einer digitalen Qualitätsinfrastruktur - Eine Labor-Testplattform für die Integration von Sensoren und Messgeräten N2 - Um die internationale Spitzenposition deutscher Unternehmen der Prozessindustrie auch in Zukunft sicher zu stellen, müssen die Unternehmen ihre Prozesse und Geschäftsabläufe digitalisieren und gemeinsam mit der Forschung innovative neue Methoden, Apparate, Anlagen, Sensoren und Automatisierungstechnik sowie Datenkonzepte entwickeln. All dies erfordert den Aufbau neuer Fähigkeiten, Investition in Talente, interdisziplinäre Kommunikation zwischen verschiedenen Personen und Abteilungen und eine Bereitschaft zur Veränderung. KW - QI-Digital KW - Wasserstofftankstelle KW - IT-OT-Testplattform KW - Prozessindustrie PY - 2023 VL - 67 IS - 9 SP - 20 EP - 23 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58461 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai A1 - Laurain, Clement A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modeling of simultaneous 19F-1H medium resolution NMR spectra for online reaction monitoring N2 - Medium resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra were treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprised direct integration, automated line fitting, indirect hard modeling, and partial least squares regression. T2 - 10. Kolloquium Arbeitskreis Prozessanalytik CY - Gerlingen, Germany DA - 25.11.2014 KW - Online NMR spectroscopy KW - Data evaluation KW - Reaction monitoring KW - Indirect hard modeling PY - 2014 UR - http://arbeitskreis-prozessanalytik.de/images/stories/Veranstaltungen/Kolloquien/10_kolloquium_2014/tagungsband_10_kolloquium_ak_prozessanalytik_2014_hq-druck_f.pdf SP - P04, 24 EP - 25 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-38360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Laurain, C. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modelling of simultaneous F-19-H-1 medium-resolution NMR spectra for online reaction monitoring N2 - Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and processmonitoring. In contrast to high-resolution onlineNMR (HR-NMR),MR-NMRcan be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture fromthe reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by 1H HR-NMR (500MHz) and 1H and 19F MRNMR (43MHz) as amodel system. The parallel online measurement is realised by splitting the flow,which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for 1H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. KW - NMR KW - 1H-NMR KW - 19F-NMR KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Automation KW - Process analytical technology KW - IHM KW - Indirect hard modeling KW - Chemometrics KW - PLS-R KW - Partial least squares regression PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/mrc.4216/abstract DO - https://doi.org/doi:10.1002/mrc.4216 VL - 54 SP - 513 EP - 520 PB - John Wiley & Sons, Ltd CY - Hoboken, New Jersey, USA AN - OPUS4-36135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - BAM quality toolbox framework for qNMR N2 - Accreditation of analytical methods, either according to GxP or ISO regulations, requires a comprehensive quality management system. General quality documents are often already in place, which need to be extended by method-specific documentation. In this presentation we like to show an idea of a modular set of standard operating procedures (SOP) specifically developed meeting the requirements for quantitative NMR. The future goal is to collaborate with different accreditated NMR laboratories to compile a universal set of SOP and other quality documents that can be modified and used as a starting point for developing your own quality system for applications of qNMR in a regulated environment. T2 - ValidNMR Workshop at Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 22.10.2020 KW - ValidNMR KW - Validation KW - NMR spectroscopy KW - ISO 17025 KW - GxP PY - 2020 AN - OPUS4-51466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Bornemann-Pfeiffer, Martin A1 - Döring, T. A1 - Falkenstein, S. A1 - Kern, S. A1 - Maiwald, Michael T1 - Benchtop NMR spectroscopy in chemical manufacturing: From hardware field integration to data modeling N2 - The use of benchtop-NMR instruments is constantly increasing during the recent years. Advantages of being affordable, portable and easy-to-operate without the need for trained staff make them especially interesting for industrial applications in quality control. However, applications of NMR spectroscopy as an online PAT tool are still very rare but offer a huge potential for process optimization and control. A key task to exploit this potential is hardware field integration of the lab-instruments in a rough environment of a chemical plant. Additionally, developments in automation and data evaluation are mandatory to ensure a robust unattended operation with low maintenance requirements. Here, we show an approach of a fully automated analyzer enclosure considering explosion safety, field communication, as well as environmental conditions in the field. Temperature sensitivity is still a limitation of benchtop-NMR instruments in flow applications. Recent developments of manufacturers allow for limited operation at static temperature levels, however, a dynamic system for continuous operation is still not available. Using a prototype system offering a larger bore, active temperature shielding studies with thermostated air were performed evaluating the performance. Automated data evaluation of NMR spectra using a modular indirect hard modeling (IHM) approach showed good results and flexibility. A second data analysis approach based on artificial neural networks (ANN) was evaluated.Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously, offering new ways to simultaneously evaluating large numbers of different models. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 24.05.2023 KW - Field integration KW - Benchtop-NMR KW - Process Analytical Technology PY - 2023 AN - OPUS4-57560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeifer, Martin A1 - Thiele, I. A1 - Gutschmann, B. A1 - Riedel, S. L. A1 - Falkenstein, S. A1 - Döring, T. A1 - Abele, M. A1 - Neubauer, M. A1 - Maiwald, Michael T1 - Benchtop-NMR-Spektroskopie – Praktische Probleme in Labor- und Prozessanwendungen N2 - In den letzten Jahren erfreut sich die Benchtop-NMR-Spektroskopie steigender Beliebtheit. Zusätzlich zu Anwendungen im Labor werden die kompakten Geräte auch zunehmend in industriellen Bereichen eingesetzt. Neben geringeren Investitions- und Betriebskosten sind insbesondere die Robustheit und einfache Bedienbarkeit dieser Systeme entscheidende Faktoren. Ein prozessnaher Einsatz kann sowohl nach Probenahme im Rahmen der Betriebsanalytik erfolgen als auch als Online-Analytik mit direkter Ankopplung an Prozesse. Insbesondere bei der direkten Kopplung mittels Durchflusszellen spielt der Probentransfer eine entscheidende Rolle. Dies zeigt sich auch am Beispiel eines Extraktionsprozesses im Labormaßstab. Das in einem Bioprozess aus tierischen Altfetten hergestellte Copolymer PHB(Co-HHX) wurde in einem Batch-Prozess mit organischen Lösungsmitteln aus gefrier-getrockneten Zellen extrahiert. Unter Variation der Parameter wurde der Prozess direkt in der mehrphasigen Suspension mittels Benchtop-NMR-Spektroskopie verfolgt. Eine große Limitierung für den Einsatz als Online-Methode ist die Temperaturempfindlichkeit der Magnetsysteme. Während die Umgebungstemperatur gut kontrollierbar ist, stellt sich die Thematik der Probentemperatur komplexer dar. Bei größeren Abweichungen von der Magnettemperatur kommt es bereits nach kurzer Zeit zu Drift-Effekten, die die Lock-Systeme nur begrenzt kompensieren können. Ein Ansatz ist die Nutzung temperierter Luftströme, ähnlich bekannter VT-Einheiten ergänzt um eine aktive Isolierung zum Magneten. An einem Modellaufbau wurden dazu verschiedene Konstruktionen zunächst mittels Thermographie charakterisiert und anschließend die Anwendbarkeit in einem Prototyp-Gerät überprüft. In der rauen industriellen Umgebung von Produktionsanlagen sind weitere Maßnahmen zum Betrieb eines Laborgerätes nötig (z.B. Temperierung, Witterungsschutz). Zusätzlich bestehen häufig strikte Anforderungen an den Explosionsschutz. Zu diesem Zweck wurde gemeinsam mit der Evonik Rheinfelden eine Einhausung entwickelt, die es ermöglicht neben der NMR-Spektroskopie auch eine weitere analytische Methode möglichst flexibel direkt an großtechnische Anlagen anzubinden. T2 - 44. Tagung Praktische Probleme der Kernresonanzspektroskopie 2023 CY - Berlin, Germany DA - 21.03.2023 KW - Benchtop-NMR KW - Prozessanalytik KW - Extraktion PY - 2023 AN - OPUS4-57202 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael T1 - Chemische Prozesskontrolle für modulare Produktionskonzepte mit direkten analytischen Methoden N2 - Flexible Produktionskonzepte werden oft mit modularen, schnell rekonfigurierbaren Einheiten verbunden. Um die Vorteile dieser flexiblen Produktion tatsächlich nutzen zu können ist neben einer geeigneten Infrastruktur auch eine ebenso anpassungsfähige Qualitätskontrolle unverzichtbar. Analysengeräte und Sensoren werden heutzutage immer kompakter und kostengünstiger in ihrer Anschaffung. Dadurch wird es möglich eine große Anzahl von Messstellen innerhalb einer Anlage zu realisieren. Die erfassten Datenmengen erfordern zuverlässige und robuste Auswerteverfahren, die sich in das Gesamtkonzept der Automatisierung einer derart flexiblen Produktion nahtlos integrieren. Referenzdaten aus direkten Methoden wie der NMR-Spektroskopie können hier einen wertvollen Beitrag zur Generierung von Prozesswissen für die Entwicklung neuer Modelle für kostengünstigere Analysenverfahren leisten. T2 - 16. Kolloquium des AK Prozessanalytik CY - Online meeting DA - 23.11.2020 KW - NMR-Spektroskopie KW - Prozessanalytik KW - Modulare Produktion KW - Chemische Prozesskontrolle PY - 2020 AN - OPUS4-51658 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Kühn, S. A1 - Haase, H. A1 - Meyer, Klas A1 - Koch, Matthias T1 - Cleaving Ergot Alkaloids by Hydrazinolysis - A Promising Approach for a Sum Parameter Screening Method N2 - Ergot alkaloids are mycotoxins formed by fungi of the Claviceps genus, which are some of the most common contaminants of food and feed worldwide. These toxins are a structurally heterogeneous group of compounds, sharing an ergoline backbone. Six structures and their corresponding stereoisomers are typically quantified by either HPLC-FLD or HPLC-MS/MS and the values subsequently summed up to determine the total ergot alkaloid content. For the development of a screening method targeting all ergot alkaloids simultaneously, the alkaloids need to be transferred to one homogeneous structure: a lysergic acid derivative. In this study, two promising cleaving methods—acidic esterification and hydrazinolysis—are compared, using dihydroergocristine as a model compound. While the acidic esterification proved to be unsuitable, due to long reaction times and oxidation sensitivity, hydrazinolysis reached a quantitative yield in 40-60 min. Parallel workup of several samples is possible. An increasing effect on the reaction rate by the addition of ammonium iodide was demonstrated. Application of hydrazinolysis to a major ergot alkaloid mix solution showed that all ergopeptines were cleaved, but ergometrine/-inine was barely affected. Still, hydrazinolysis is a suitable tool for the development of a sum parameter screening method for ergot alkaloids in food and feed. KW - Ergot alkaloids KW - Sum parameter method KW - Hydrazinolysis KW - Esterification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527508 DO - https://doi.org/10.3390/toxins13050342 VL - 13 IS - 5 SP - 342 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Döring, T. A1 - Friedrich, Y. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Highly automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR or Raman spectroscopy). Based on experiences from earlier field studies an improved NMR analyzer enclosure setup was developed and built, including the option of a secondary method (e.g., optical spectroscopy). Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop-NMR KW - Process Analytical Technology KW - Chemical Production KW - NMR spetroscopy PY - 2023 AN - OPUS4-58398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2022 CY - La Jolla, CA, USA DA - 16.10.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-56090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ProcessNet and DECHEMA-BioTechNet Jahrestagungen 2022 with 13th ESBES Symposium CY - Aachen, Germany DA - 12.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 17. AKPAT Kolloquium 2022 CY - Amersfoort, Netherlands DA - 19.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous- Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 9th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Nashville, Tennessee, USA DA - 17.10.2021 KW - Process Analytical Technology KW - Benchtop-NMR KW - NMR spectroscopy PY - 2021 AN - OPUS4-53585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous-Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - DECHEMA Workshop "Sensorik für die Digitalisierung chemischer Produktionsanlagen" CY - Frankfurt am Main, Germany DA - 13.06.2022 KW - Compact NMR KW - Process Control KW - Modular Production KW - Process Analytical Technology PY - 2022 AN - OPUS4-55037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - USP qNMR Emerging Technologies Workshop & Roundtable CY - Online meeting DA - 17.11.2020 KW - Quantitative NMR spectroscopy KW - Benchtop-NMR KW - Process Analytical Technology PY - 2020 AN - OPUS4-51595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ACHEMA Pulse 2021 CY - Online meeting DA - 15.06.2021 KW - Process Analytical Technology KW - NMR spectroscopy KW - Benchtop-NMR PY - 2021 AN - OPUS4-52822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to continuously flowing samples at higher temperatures or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is typically not designed for compensation of such effects. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements using an optical thermo-graphy setup, a model predictive control was set up to minimize any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, potentially extend the application of compact NMR instruments to flowing samples at higher temperature than the permanent magnet. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Thermostating KW - Benchtop-NMR KW - NMR spectroscopy KW - Process Analytical Technology PY - 2023 AN - OPUS4-58970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Temperature Control KW - Process Analytical Technology KW - Flow NMR PY - 2023 AN - OPUS4-58400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579219 DO - https://doi.org/10.1002/mrc.5379 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Paul, Andrea A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Maiwald, Michael T1 - Design and Validation of a Compact NMR Analyser N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Unionʼs Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8” tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Prozessanalytik KW - Reaction Monitoring KW - Online NMR Spectrsocopy KW - Process Analytical Technology KW - Industrie 4.0 KW - EuroPACT PY - 2017 SP - 72 EP - 73 CY - Frankfurt a. M. AN - OPUS4-40229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Meyer, Klas A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and high-throughput mass quantification of micro¬plastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermo-analytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - NIR KW - Soil KW - compost KW - PLSR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546405 DO - https://doi.org/10.1088/1361-6501/ac5e5f SN - 0957-0233 VL - 33 IS - 7 SP - 075801 EP - 075814 PB - IOP Publishing Ltd. CY - UK AN - OPUS4-54640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Braun, Ulrike A1 - Meyer, Klas A1 - Paul, Andrea T1 - Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - Mikroplastik KW - NIR KW - Sensor KW - Kompost KW - Multivariat PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552605 DO - https://doi.org/10.1088/1361-6501/ac5e5f VL - 33 IS - 7 SP - 1 EP - 13 PB - IOP Publishing Ltd. CY - Bristol AN - OPUS4-55260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569198 DO - https://doi.org/10.1038/s41598-023-28203-0 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Esche, E. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Eine robuste Protessnalytik für die Reaktivabsorption von CO2 aus industriellen Gasströmen basierend auf Online- NMR- und Rama-Spektroskopie T2 - 10. Kolloqium des Arbeitskreises Prozessanalytik CY - Gerlingen DA - 2014-11-25 PY - 2014 AN - OPUS4-33136 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Kraemer, B. A1 - Esche, E. A1 - Müller, D. A1 - Wozny, G. T1 - Eine robuste Prozessanalytik für die CO2-Abtrennung industrieller Gasströme basierend auf Online-NMR- und Raman-Spektroskopie T2 - ProcessNET Jahrestagung 2014 CY - Aachen DA - 2014-09-30 PY - 2014 AN - OPUS4-31883 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kraemer, B. A1 - Zientek, Nicolai A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Eine robuste Prozessanalytik für die Reaktivabsorption von CO2 aus in industriellen Gasströmen basierend auf Onlin-NMR- und Raman-Spektroskopie T2 - 9. Interdisziplinäres Doktorandenseminar CY - Berlin DA - 2015-02-22 PY - 2015 AN - OPUS4-33131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kraemer, B. A1 - Zientek, Nicolai A1 - Esche, E. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Eine robuste Prozessanalytik für die Reaktivabsorption von CO2 aus industriellen Gasströmen basierend auf Online-NMR- und -Raman-Spektroskopie N2 - Die Abtrennung von CO2 aus industriellen Gasströmen ist eine großtechnisch wichtige Trennaufgabe. Neben der Aufarbeitung von Erdgas werden diese Verfahren zur Verminderung der CO2-Emission durch industrielle Rauchgase, insbesondere für alternativlose Prozesse wie die Stahl- und Zementproduktion diskutiert. T2 - 10. Kolloquium Arbeitskreis Prozessanalytik CY - Gerlingen, Germany DA - 25.11.2014 KW - Prozessanalytik KW - Quantitative NMR-Spektroskopie KW - Raman spectroscopy KW - CO2-Absorption KW - CCS PY - 2014 UR - http://arbeitskreis-prozessanalytik.de/images/stories/Veranstaltungen/Kolloquien/10_kolloquium_2014/tagungsband_10_kolloquium_ak_prozessanalytik_2014_hq-druck_f.pdf SP - P03, 23 EP - 23 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Kern, Simon T1 - Field integration of benchtop NMR instruments for online monitoring and process control of a modular industrial reaction step N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 4th Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Reaction monitoring KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354427 AN - OPUS4-35442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - Fitting of physically motivated spectral models – a simple calibration-free method for evaluation of online NMR spectra N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Photoreaction KW - Online NMR spectroscopy KW - Spectral modeling KW - Reaction monitoring PY - 2017 AN - OPUS4-39694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - King, R. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible Automation with compact NMR instruments N2 - Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions. T2 - 7th Annual PANIC Conference CY - Hilton Head Island, South Carolina, USA DA - 03.03.2019 KW - Online NMR Spectroscopy PY - 2019 AN - OPUS4-47715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480623 DO - https://doi.org/10.1007/s00216-019-01752-y SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas T1 - Flexible Prozessanalytik für die pharmazeutische Produktion - Benchtop-NMR-Spektroskopie im industriellen Einsatz N2 - Im Rahmen des EU-Projekts „CONSENS – Integrated Control and Sensing“ wurde ein vollautomatisiertes, gemäß Atmosphère-Explosibles(ATEX)-Regeln zertifiziertes Analysatormodul auf Basis eines kommerziellen Benchtop-Kernspinresonanzspektrometers (Engl. nuclear magnetic resonance, NMR) entwickelt und im Umfeld einer modularen containerbasierten Produktionsanlage validiert. Auf Basis der gewonnenen Daten konnten sowohl eine iterative Optimierung der Prozessparameter erfolgen als auch Referenzdaten für die Kalibrierung eines Nahinfrarot-Spektrometers gewonnen werden. KW - Prozessanalytik KW - NMR-Spektroskopie KW - Modulare Produktion KW - Kalibriertransfer PY - 2022 VL - 12 IS - 3 SP - 122 EP - 129 PB - Editio Cantor Verlag CY - Aulendorf AN - OPUS4-55402 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Rademann, K. A1 - Maiwald, Michael T1 - High-pressure NMR spectroscopy in condensed- and gas- phase T2 - 8th Internatiomal Gas Analysis Symposium CY - Rotterdam, Netherlands DA - 2015-06-10 PY - 2015 AN - OPUS4-35056 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kipphardt, Heinrich A1 - Maiwald, Michael T1 - High-pressure qNMR spectroscopy in condensed- and gas-phase towards determination of impurities and compositions of gas mixtures N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10 ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied petroleum gas mixtures (LPG) with high accuracy provided in constant-pressure piston cylinders. T2 - 35th Meeting of the CCQM-Gas Analysis Working Group, Workshop "Cutting edge research for gas metrology" CY - Caparica, Portugal DA - 13.10.2016 KW - Quantitative NMR spectroscopy KW - Gas-phase NMR KW - Reference gas mixtures KW - Liquefied petroleum gas PY - 2016 AN - OPUS4-37803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - High-pressure qNMR spectroscopy in condensed- and gas-phase towards determination of impurities and compositions of gas mixtures N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied petroleum gas mixtures (LPG) with high accuracy provided in constant pressure piston cylinders. T2 - qNMR Summit 2017 CY - Berlin, Germany DA - 16.03.2017 KW - Quantitative NMR spectroscopy KW - Gas-phase NMR KW - Reference gas mixtures KW - Liquefied petroleum gas PY - 2017 AN - OPUS4-39425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kraemer, B. A1 - Esche, E. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - High-pressure qNMR studies of fluids and gases T2 - 3rd Annual Practical Applications of NMR in Industry Conference (PANIC) CY - San Diego, USA DA - 2015-02-09 PY - 2015 AN - OPUS4-33134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - High-Purity Corundum as Support for Affinity Extractions from Complex Samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. KW - Corundum KW - Sapphire KW - Affinity chromatography KW - Antibodies KW - Self-assembled monolayers (SAM) KW - Polyglycerol KW - Dendrimer KW - Nonspecific binding (NSB) KW - Purification KW - Solid-phase extraction (SPE) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559342 DO - https://doi.org/10.3390/separations9090252 VL - 9 IS - 9 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Meyer, Klas T1 - Hochdruck NMR-Spektroskopie N2 - Der Einsatz der quantitativen Kernspinresonanzspektroskopie (NMR-Spektroskopie) in technischen Mischungen stellt einen vielversprechenden Ansatz für die Verfolgung und Kontrolle von Abläufen innerhalb chemischer Produktionsprozesse dar. Die Möglichkeit der direkten Relativquantifizierung ohne Notwendigkeit der Zugabe von Standards oder einer vorherigen Kalibrierung, vergleichbar mit einem simplen „Zählen“ von Kernspins im Messvolumen, macht die Methode darüber hinaus besonders interessant für metrologische Fragestellungen. Im ersten Teil dieser Dissertation wird die Entwicklung von Hochdruckmethoden für Anwendungen in der Gasmetrologie thematisiert. Als ergänzende Analysenmethode liefert die NMR-Spektroskopie hier wichtige Erkenntnisse zur Unterstützung der Herstellung hochgenauer Gas- und Flüssiggasgemische. Der zweite Teil beinhaltet Anwendungsbeispiele für die Prozessanalytik an technischen Systeme auf Basis von Online-NMR- und -Raman-Spektroskopie anhand der industriell relevanten Verfahren der CO2 Absorption in wässrigen Alkanolaminlösungen, sowie der Hydroformylierung langkettiger Alkene in einer Mikroemulsion. KW - Hochdruck NMR-Spektroskopie KW - Quantitative NMR-Spektroskopie KW - Gasphasen NMR-Spektroskopie KW - Prozessanalytik PY - 2017 SN - 9783736994621 SP - 1 EP - 180 PB - Cuvillier CY - Göttingen AN - OPUS4-39092 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Esche, E. A1 - Kraemer, B. A1 - Müller, D. A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Maiwald, Michael A1 - Wozny, G. T1 - Improved desorption control via Raman spectroscopy N2 - In this contribution a Raman spectrometer based control structure for the heating of a desorption column is proposed. For this purpose calibration experiments for the absorption of carbon dioxide using monoethanolamine solutions are carried out and calibration models are developed to measure both carbon dioxide liquid loads and monoethanolamine mass fractions. The calibration experiments are supported by online NMR spectroscopy to accurately measure the appearance of all species in the electrolyte system. Both models are tested during the plant operation of a mini-plant for the oxidative coupling of methane and the proof of concept for the control structure is given. The Raman spectroscopy implemented in the ATEX conform mini-plant shows a reliable and robust performance being even indifferent to impurities hindering the GC analysis. T2 - 20th International Conference of Process Engineering and Chemical Plant Design CY - Berlin, Germany DA - 15.10.2014 KW - Absorption KW - Carbon capture KW - Raman spectroscopy KW - desorption control KW - Prozessanalytik KW - Process analytical technology PY - 2014 UR - https://www.verfahrenstechnik.tu-berlin.de/fileadmin/fg158/Dokumente/Manuskripte/2014/20th-ICPEPD-Proceedings.pdf SN - 978-3-00-047364-7 SP - 223 EP - 233 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-37399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, S. A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial Applications of benchtop NMR Spectroscopy for Quality Control of Silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to additives for glass fiber industry, sealants, adhesives, coatings and paints to the modification of polymers. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control. NMR nuclei of interest for silane products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated. It was shown how it can extend the application range where existing technologies like NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to a lack of reference data. In a first case study the process of hydrolysis and condensation was observed using online NMR analysis. For this purpose, the substituents of a trialkoxysilane are first hydrolyzed by adding water and corresponding silanols are formed, which can then bind to materials via SiOH functions and crosslink to form siloxane units. Another case study was dealing with the kinetics of the cleavage of a cyclic silane compound. Online NMR analysis was used both in the laboratory and in the manufacturing plant. For this purpose, a fully automated containment system was used, which enables the use of a commercial NMR spectrometer in ATEX-environments. In the third case study presented, quantitative 1H-NMR spectra were acquired on product mixtures of a trialkoxysilane and other components such as organic stabilizers, organotin compounds, an aromatic amine and organic peroxides. An automatic evaluation method based on Indirect Hard Modeling (IHM) was developed. T2 - Magritek's Spinsolve NMR Users Meeting 2021 CY - Online meeting DA - 20.04.2021 KW - NMR spectroscopy KW - Silanes KW - Process Analytical Technology KW - Quality Control PY - 2021 AN - OPUS4-52557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, Simon A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial Applications of Low-Field NMR Spectroscopy for Process and Quality Control of Silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to bonding-imparting properties in the glass fiber industry, for sealants and adhesives, for coatings and paints to the modification of polymer materials. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control [1]. Interesting NMR nuclei for the above-mentioned products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated based on various case studies. In the course of the case studies it was shown how low-field NMR spectroscopy extends the application range of chemical analysis to new applications where existing technologies such as NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to lack of reference data. T2 - 5th European Conference on Process Analytics and Control Technology (EuroPACT) CY - Online meeting DA - 15.11.2021 KW - NMR spectroscopy KW - Benchtop-NMR KW - Silanes KW - Quality Control PY - 2021 AN - OPUS4-53777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -