TY - CONF A1 - Meyer, Klas A1 - Gräßer, P. A1 - Kern, S. A1 - Maiwald, Michael T1 - Low-Field NMR Spectroscopy on Solid Dispersions A Flow Injection Method for End-Point Control of Azo Couplings for Industrial Pigment Production N2 - Global demand for pigments is expected to increase to around 13.4 million tons per year by 2030, representing approximately $22 billion – 5% of which will be azo pigments as the main organic pigments. Azo pigments, i.e., especially the azo bridge required for them, are almost exclusively produced in technology by the so-called azo coupling reaction in large-scale approaches on the scale of 50–100 cubic meters. Among other things, one of the reasons why large-scale production itself is still essentially discontinuous is the lack of analytical methods for a continuous azo pigment synthesis. In an azo coupling process, an aromatic amine is diazotized to form the diazonium compound (diazo compound), which then reacts with a coupling component, i.e., "couples". A slight excess of the coupler is desired for the end of the reaction, which stoichiometrically consumes the remaining (harmful) diazo compound, i.e., below 500 ppm. This is carried out with a manual spotting reaction of a fast-binding coupler. To carry out continuous azo coupling, care must be taken to ensure that the actual coupling reaction proceeds as rapidly as possible, i.e., preferentially, compared with possible side reactions. Reliable measuring methods are thus a decisive criterion for the useful performance of a continuous azo pigment synthesis. An analytical online procedure is difficult due to several limitations at once: solid dispersions extremely limit the range of reproducible analytical procedures. In addition, the appearance of a signal (e.g., excess of a starting material) in the ppm range must be reliably detected against the matrix background. The back-titration method and benchtop NMR spectroscopy were used to overcome these problems. We present a feasibility study for a suitable process analysis with benchtop NMR spectroscopy on disperse systems for equimolar dosing of the "diazotization" or "coupling" sub-step in azo coupling, which was carried out in cooperation with a chemical company. This could replace tedious manual spotting T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Dispersions KW - Process Analytical Technology KW - Process monitoring PY - 2023 AN - OPUS4-58399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-toaliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Process Analytical Technology KW - Process control KW - Hydration KW - EuroPACT PY - 2017 SP - 103 EP - 103 CY - Frankfurt a. M. AN - OPUS4-40231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illner, M. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Esche, E. A1 - Maiwald, Michael A1 - Repke, J.-U. T1 - Operation and Optimal Control of Multiphase Systems – Hydroformylation in Microemulsions on the Mini-plant Scale N2 - Hydroformylation of short-chained olefins has been established as a standard industrial process for the production of C2 to C6 aldehydes. Using aqueous solutions of transition metal complexes these processes are carried out homogeneously catalyzed. A biphasic approach allows for highly efficient catalyst recovery. Regarding renewable feedstocks, the hydroformylation of long-chained alkenes (> C10) in a biphasic system, using highly selective rhodium catalysts has yet not been shown. Therefore, the Collaborative Research Center SFB/TR 63 InPROMPT develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or so far nonviable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles for the operation. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tool, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated via the solution of dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and catalyst leaching below 0.1 ppm. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Hydroformylation KW - Micoemulsion KW - Dispersion KW - Process Analytical Technology KW - Mini-plant KW - EuroPACT PY - 2017 SP - 92 EP - 92 CY - Frankfurt a. M. AN - OPUS4-40230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to continuously flowing samples at higher temperatures or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is typically not designed for compensation of such effects. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements using an optical thermo-graphy setup, a model predictive control was set up to minimize any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, potentially extend the application of compact NMR instruments to flowing samples at higher temperature than the permanent magnet. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Thermostating KW - Benchtop-NMR KW - NMR spectroscopy KW - Process Analytical Technology PY - 2023 AN - OPUS4-58970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Temperature Control KW - Process Analytical Technology KW - Flow NMR PY - 2023 AN - OPUS4-58400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Bornemann-Pfeiffer, Martin A1 - Döring, T. A1 - Falkenstein, S. A1 - Kern, S. A1 - Maiwald, Michael T1 - Benchtop NMR spectroscopy in chemical manufacturing: From hardware field integration to data modeling N2 - The use of benchtop-NMR instruments is constantly increasing during the recent years. Advantages of being affordable, portable and easy-to-operate without the need for trained staff make them especially interesting for industrial applications in quality control. However, applications of NMR spectroscopy as an online PAT tool are still very rare but offer a huge potential for process optimization and control. A key task to exploit this potential is hardware field integration of the lab-instruments in a rough environment of a chemical plant. Additionally, developments in automation and data evaluation are mandatory to ensure a robust unattended operation with low maintenance requirements. Here, we show an approach of a fully automated analyzer enclosure considering explosion safety, field communication, as well as environmental conditions in the field. Temperature sensitivity is still a limitation of benchtop-NMR instruments in flow applications. Recent developments of manufacturers allow for limited operation at static temperature levels, however, a dynamic system for continuous operation is still not available. Using a prototype system offering a larger bore, active temperature shielding studies with thermostated air were performed evaluating the performance. Automated data evaluation of NMR spectra using a modular indirect hard modeling (IHM) approach showed good results and flexibility. A second data analysis approach based on artificial neural networks (ANN) was evaluated.Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously, offering new ways to simultaneously evaluating large numbers of different models. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 24.05.2023 KW - Field integration KW - Benchtop-NMR KW - Process Analytical Technology PY - 2023 AN - OPUS4-57560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Döring, T. A1 - Friedrich, Y. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Highly automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR or Raman spectroscopy). Based on experiences from earlier field studies an improved NMR analyzer enclosure setup was developed and built, including the option of a secondary method (e.g., optical spectroscopy). Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop-NMR KW - Process Analytical Technology KW - Chemical Production KW - NMR spetroscopy PY - 2023 AN - OPUS4-58398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, Simon A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial applications of low-field NMR spectroscopy for process and quality control of silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to additives for glass fiber industry, sealants, adhesives, coatings and paints to the modification of polymers. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control. NMR nuclei of interest for silane products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated. It was shown how it can extend the application range where existing technologies like NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to a lack of reference data. In a first case study the process of hydrolysis and condensation was observed using online NMR analysis. For this purpose, the substituents of a trialkoxysilane are first hydrolyzed by adding water and corresponding silanols are formed, which can then bind to materials via SiOH functions and crosslink to form siloxane units. Another case study was dealing with the kinetics of the cleavage of a cyclic silane compound. Online NMR analysis was used both in the laboratory and in the manufacturing plant. For this purpose, a fully automated containment system was used, which enables the use of a commercial NMR spectrometer in ATEX-environments. In the third case study presented, quantitative 1H-NMR spectra were acquired on product mixtures of a trialkoxysilane and other components such as organic stabilizers, organotin compounds, an aromatic amine and organic peroxides. An automatic evaluation method based on Indirect Hard Modeling (IHM) was developed. T2 - Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 19.10.2020 KW - Process Analytical Technology KW - NMR spectroscopy KW - Benchtop-NMR KW - Process-NMR PY - 2020 AN - OPUS4-51465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Validation report on NMR N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug and play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/ parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consensspire.eu). KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-435521 SP - 1 EP - 31 AN - OPUS4-43552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517264 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -