TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - King, R. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible Automation with compact NMR instruments N2 - Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions. T2 - 7th Annual PANIC Conference CY - Hilton Head Island, South Carolina, USA DA - 03.03.2019 KW - Online NMR Spectroscopy PY - 2019 AN - OPUS4-47715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Already Producing or Still Calibrating? – Advances of Model-Based Automation for Online NMR Spectroscopy N2 - The transition from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute comparison method”, independent of the matrix, it runs with very short set-up times in combination with “modular” spectral models. These are based on pure component NMR spectra without the need for tedious calibrations runs. We present approaches from statistical, (i.e., Partial Least Squares Regression) to physically motivated models (i.e., Indirect Hard Modelling). Based on concentration measurements of reagents and products by the NMR analyser a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - 2nd Reaction Monitoring Symposium CY - Bath, UK DA - 28.01.2019 KW - Process Analytical Technology KW - NMR Spectroscopy KW - Modular Production PY - 2019 AN - OPUS4-47309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Acker, J. A1 - Maiwald, Michael T1 - Online NMR and Raman Spectroscopy – Combination of PAT tools for Process Monitoring N2 - Improvement in deep process understanding is a mandatory prerequisite for the application of modern concepts like Industrial Internet of Things (IIoT) or “Industrie 4.0”. The direct hyphenation with online methods of process analytical technology (PAT) allows profound insights into the actual reactions within chemical and pharmaceutical production steps and provides necessary information for associated advanced control strategies. While the industrial application of online Raman spectroscopy has already been successfully demonstrated, low-field NMR spectroscopy is not yet adequately developed as a robust online method for use in process industry. The high information content combined with the low calibration effort makes NMR spectroscopy a highly promising method for modern process automation with a high flexibility due to short set-up times and novel calibration concepts. This is a major advantage compared to other analytical methods, especially regarding multi-purpose plant strategies, as well as processes suffering from fluctuating quality of raw materials. The work presented here focusses on the heterogeneous catalyzed hydrogenation of 2-butyne-1,4-diol, as a step of the synthesis of industrially important solvent tetrahydrofuran. This reaction is proceeding via an intermediate product and suffers from competitive reaction paths. In this application, online NMR and Raman spectroscopy were combined with data from classical process sensors, e.g., pressure, temperature, and flow transducers in a highly automated setup for the development of innovative control concepts. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 31.01.2019 KW - Process Analytical Technology KW - Hydrogenation KW - Compact NMR Spectroscopy KW - Online-NMR spectroscopy PY - 2019 AN - OPUS4-47310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502825 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-480623 SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Kern, Simon T1 - NMR Spectroscopy for Online Monitoring and Process Control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control. T2 - Lonza Shared Best Practice Seminar CY - Visp, Switzerland DA - 26.02.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Compact NMR Spectroscopy KW - Quantitative NMR Spectroscopy PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Gräßer, Patrick A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Quantitative NMR-Spektroskopie – Eine unverzichtbare Methode für die Analytische Chemie N2 - Die NMR-Spektroskopie stellt heutzutage eine der wichtigsten Analysenmethoden in der organischen Chemie dar. Während der Großteil aller Untersuchungen qualitativ mit dem Ziel der Stoffidentifikation und Strukturaufklärung erfolgt, erlangt die quantitative NMR-Spektroskopie (qNMR) zunehmend an Bedeutung in Forschung und Industrie. Der entscheidende Vorteil gegenüber anderen Analysenmethoden liegt in der direkten Proportionalität der Signalfläche zur Anzahl Kernspins im Messvolumen. Dies erlaubt eine kalibrationsfreie Relativquantifizierung. Zur Absolutquantifizierung reicht die Zugabe einer definierten Menge eines vom Analyten unabhängigen NMR-Standards aus. Trotz dieser Vorteile findet sich die qNMR bislang nur vereinzelt in Normen und Standardverfahren wieder. Zahlreiche Ringversuche in Metrologie und Industrie demonstrieren die Leistungsfähigkeit moderner NMR-Spektrometer und stärken das Vertrauen in die Methode. Die Entwicklung von Validierungskonzepten, sowie die kommerzielle Verfügbarkeit geeigneter zertifizierter Referenzmaterialien erleichtern die Anwendung, insbesondere im zumeist stark regulierten industriellen Umfeld. Neben etablierten Hochfeld-NMR Spektrometern hat sich in den letzten Jahren ein stark wachsender Markt für kompakte Benchtop-NMR Geräte auf Permanentmagnetbasis entwickelt. Die geringeren Anschaffungs- und Betriebskosten, sowie die einfache Bedienbarkeit erlaubt es auch kleineren Unternehmen in diese Analysenmethode einzusteigen. Weiterhin besteht die Möglichkeit diese mobilen Systeme näher an die Produktion zu bringen, welches von der klassischen Qualitätskontrolle bis hin zur Online-Prozesskontrolle als vollautomatisierter Analysator reicht. Die geringere Feldstärke der Systeme erfordert hier oft den Einsatz modellbasierter Ansätze zur Spektrenauswertung (z.B. Indirect Hard Modeling). Dieser Beitrag gibt eine Übersicht über aktuelle Anwendungen und Entwicklungen der qNMR von der universellen, hochgenauen Labormethode bis hin zur robusten Anwendung als Online-Analysator im Feld. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - qNMR KW - NMR Spektroskopie KW - Messunsicherheit PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47661 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Maiwald, Michael T1 - NMR Validation - Measurement Uncertainty N2 - There is a need within the NMR community to progress forward in exploring new facets in which we can use analytical techniques to advance our understanding of various systems. One aspect the NMR community hasn’t fully encompassed is the validation process, which also involves setting reference standards, establishing a common language that directly relates to NMR, communication relating to validation, and much more. This workshopcontribution starts with an overview on international metrology for qNMR spectroscopy. Since NMR is completely described by mathematical equations, the measurement unceartainty can directly be dreived from formula. Examples are presented. These are differentiated between type A and B evaluations. Finally the Expanded Unceartainty is defined. Since the user needs a risk-based unceartainty assessment, different "leagues" for routine, advanced, and high level needs are proposed to make clear, that no all sources of uncertainty have to be taken in considerention at practical levels. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2019 - Validation Workshop CY - Hilton Head Island, USA DA - 04.03.2019 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Uncertainty Evaluation KW - Weighing Uncertainty KW - NMR Method Validation PY - 2019 AN - OPUS4-47509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory Comparison of Low-Field NMR Spectrometers – Purities at 200 and 10 mmol/L - Preliminary Results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - 7th Practical Applications of NMR in Industry Conference (PANIC) CY - Hilton Head Island, SC, USA DA - 04.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory comparison of low-field NMR spectrometers – Purities at 200 and 10 mmol/L - Preliminary results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -