TY - CONF A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Meyer, Klas A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant II - Calibration and prediction by Raman spectra N2 - The Collaborative Research Center InPROMPT aims to establish a novel process concept for the hydroformylation of long-chained olefins, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro-emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the temperature and concentration sensitive multi-phase system demands a continuous observation of the reaction to achieve an operational and economically feasible plant operation. For that purpose, we tested the potential of both NMR and Raman spectroscopy for process control assistance. The lab-scale experiments were supported by sampling for off-line GC-analysis as reference analytics. The results of the NMR experiments will be part of another contribution. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Prozess-Spektroskopie KW - Emulsions KW - Hydroformylation KW - Reaction monitoring KW - Raman spectroscopy PY - 2015 SP - 66 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Paul, Andrea A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Prozessanalytik für die moderne Verfahrenstechnik – Online-NMR- und -Raman-Spektroskopie im mizellaren Stoffsystem N2 - Homogen katalysierte Reaktionen sind wichtige Werkzeuge der chemischen Industrie. Milde Reaktionsbedingungen und hohe Selektivitäten führen zu einer energie- und ressourcenschonenden Produktion. Ein bedeutender Prozessschritt ist die Hydroformylierung. Hier kommen Kobalt- und Rhodiumkomplexe mit mehrzähnigen Liganden zum Einsatz, die zumeist in wässriger Lösung vorliegen. Die Anwendbarkeit beschränkt sich demnach auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Hydroformylierung KW - Prozessanalytik KW - Prozess-Spektroskopie KW - NMR-Spektroskopie KW - Raman-Spektroskopie KW - Mizellen PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/cite.201650219/epdf U6 - https://doi.org/10.1002/cite.201650219 SN - 1522-2640 VL - 88 SP - 1304 EP - 1317 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37316 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Paul, Andrea A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant I – Experimental setup and NMR reaction monitoring N2 - Hydroformylation represents an important homogeneous catalyzed process, which is widely used within chemical industry. Usually applied with simple alkenes like Propene and Butene aldehydes obtained from alkenes >C6 are relevant intermediates in production of plasticizers, surfactants and polymers. Today the active catalyst species is often based on valuable Rhodium complexes in aqueous solution. This implies the problem of limited water solubility of the reactands, which is acceptable for short chain lengths, but states a problem in case of higher alkenes. Along with that efficient separation and recycling of the catalyst becomes more complicated. There are different approaches tackling this problem, e.g., by using of salt formation in the BASF process or downstream distillation within the Shell process T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Emuslions KW - Hydroformylation KW - Online NMR spectroscopy KW - Reaction monitoring PY - 2015 SP - 51 EP - 51 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Online Spectroscopy in Microemulsions – A Process Analytical Approach for a Hydroformylation Mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands a continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of both online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by off-line GC-analysis as a reference method. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions in the transfer lines. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with high 1-dodecene content the formation of isomers as a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in both laboratory setup and mini-plant. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Microemulsions KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Online Raman Spectroscopy PY - 2017 SP - 64 EP - 64 CY - Frankfurt a. M. AN - OPUS4-40228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Illner, M. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Esche, E. A1 - Maiwald, Michael A1 - Repke, J.-U. T1 - Operation and Optimal Control of Multiphase Systems – Hydroformylation in Microemulsions on the Mini-plant Scale N2 - Hydroformylation of short-chained olefins has been established as a standard industrial process for the production of C2 to C6 aldehydes. Using aqueous solutions of transition metal complexes these processes are carried out homogeneously catalyzed. A biphasic approach allows for highly efficient catalyst recovery. Regarding renewable feedstocks, the hydroformylation of long-chained alkenes (> C10) in a biphasic system, using highly selective rhodium catalysts has yet not been shown. Therefore, the Collaborative Research Center SFB/TR 63 InPROMPT develops new process concepts, involving innovative tuneable solvent systems to enable rather difficult or so far nonviable synthesis paths. One possible concept is the hydroformylation of long-chained alkenes in microemulsions. For this, a modular mixer-settler concept was proposed, combining high reaction rates and efficient catalyst recycling via the application of technical grade surfactants. The feasibility of such a concept is evaluated in a fully automated, modular mini-plant system within which the characteristics of such a multiphase system pose several obstacles for the operation. Maintaining a stable phase separation for efficient product separation and catalyst recycling is complicated by small and highly dynamic operation windows as well as poor measurability of component concentrations in the liquid phases. In this contribution, a model-based strategy is presented to enable concentration tracking and phase state control within dynamic mini-plant experiments. Raman spectroscopy is used as an advanced process analytical tool, which allows for online in-situ tracking of concentrations. Combined with optical and conductivity analysis optimal plant trajectories can be calculated via the solution of dynamic optimization problem under uncertainty. Applying these, a stable reaction yield of 40 % was achieved, combined with an oil phase purity of 99,8 % (total amount of oily components in the oil phase) and catalyst leaching below 0.1 ppm. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Hydroformylation KW - Micoemulsion KW - Dispersion KW - Process Analytical Technology KW - Mini-plant KW - EuroPACT PY - 2017 SP - 92 EP - 92 CY - Frankfurt a. M. AN - OPUS4-40230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -