TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to continuously flowing samples at higher temperatures or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is typically not designed for compensation of such effects. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements using an optical thermo-graphy setup, a model predictive control was set up to minimize any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, potentially extend the application of compact NMR instruments to flowing samples at higher temperature than the permanent magnet. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Thermostating KW - Benchtop-NMR KW - NMR spectroscopy KW - Process Analytical Technology PY - 2023 AN - OPUS4-58970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, Simon A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial applications of low-field NMR spectroscopy for process and quality control of silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to additives for glass fiber industry, sealants, adhesives, coatings and paints to the modification of polymers. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control. NMR nuclei of interest for silane products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated. It was shown how it can extend the application range where existing technologies like NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to a lack of reference data. In a first case study the process of hydrolysis and condensation was observed using online NMR analysis. For this purpose, the substituents of a trialkoxysilane are first hydrolyzed by adding water and corresponding silanols are formed, which can then bind to materials via SiOH functions and crosslink to form siloxane units. Another case study was dealing with the kinetics of the cleavage of a cyclic silane compound. Online NMR analysis was used both in the laboratory and in the manufacturing plant. For this purpose, a fully automated containment system was used, which enables the use of a commercial NMR spectrometer in ATEX-environments. In the third case study presented, quantitative 1H-NMR spectra were acquired on product mixtures of a trialkoxysilane and other components such as organic stabilizers, organotin compounds, an aromatic amine and organic peroxides. An automatic evaluation method based on Indirect Hard Modeling (IHM) was developed. T2 - Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 19.10.2020 KW - Process Analytical Technology KW - NMR spectroscopy KW - Benchtop-NMR KW - Process-NMR PY - 2020 AN - OPUS4-51465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous- Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 9th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Nashville, Tennessee, USA DA - 17.10.2021 KW - Process Analytical Technology KW - Benchtop-NMR KW - NMR spectroscopy PY - 2021 AN - OPUS4-53585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, Simon A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial Applications of Low-Field NMR Spectroscopy for Process and Quality Control of Silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to bonding-imparting properties in the glass fiber industry, for sealants and adhesives, for coatings and paints to the modification of polymer materials. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control [1]. Interesting NMR nuclei for the above-mentioned products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated based on various case studies. In the course of the case studies it was shown how low-field NMR spectroscopy extends the application range of chemical analysis to new applications where existing technologies such as NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to lack of reference data. T2 - 5th European Conference on Process Analytics and Control Technology (EuroPACT) CY - Online meeting DA - 15.11.2021 KW - NMR spectroscopy KW - Benchtop-NMR KW - Silanes KW - Quality Control PY - 2021 AN - OPUS4-53777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -