TY - CONF A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Kraume, M. A1 - Maiwald, Michael T1 - Untersuchung der Auflösungskinetik von pharmazeutischen Cokristallen mittels Onlilne-NMR-Spektroskopie N2 - Bei der Entwicklung pharmazeutischer Wirkstoffe werfen Substanzen mit einer geringen Löslichkeit, Auflösungsrate und damit einhergehend schlechten Bioverfügbarkeit immer größere Probleme auf. Diese Eigenschaften und nicht etwa toxikologische Eigenschaften oder schlechte Wirksamkeit sorgen dafür, dass es weniger als 1 % aller Wirkstoffe bis in die Markteinführung schaffen. Eine Reihe von Ansätzen zur Verbesserung der schlechten Wasserlöslichkeit konnten bereits etabliert werden. Hierunter zählen die gezielte Salzbildung bzw. Salzscreening, Solubilisierung mit Cosolventien oder die Nutzung von Polymeren als mögliche Transportwege. Eine weitere Möglichkeit bietet die Bildung verschiedener polymorpher Formen, sowohl der Einzelkomponente als auch von den verschiedenen Mehrkomponentenverbindungen. T2 - 7. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 24.02.2013 KW - Quantitative Online-NMR-Spektroskopie KW - Pharmazeutische Cokristalle PY - 2013 SN - 978-3-9815360-9-6 SP - 9 EP - 11 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) AN - OPUS4-28266 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Maiwald, Michael T1 - Quantitative online NMR spectroscopy in a nutshell N2 - Online NMR spectroscopy is an excellent tool to study complex reacting multicomponent mixtures and gain process insight and understanding. For online studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. This paper compiles the most important aspects towards quantitative process NMR spectroscopy in complex multicomponent mixtures and provides examples. After NMR spectroscopy is introduced as an online method and for technical samples without sample preparation in deuterated solvents, influences of the residence time distribution, pre-magnetization, and cell design are discussed. NMR acquisition and processing parameters as well as data preparation methods are presented and the most practical data analysis strategies are introduced. KW - Prozessanalytik KW - Process analytical technology KW - Online NMR spectroscopy KW - Online monitoring PY - 2016 U6 - https://doi.org/10.1002/cite.201500120 SN - 0009-286X VL - 88 IS - 6 SP - 698 EP - 709 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Dalitz, F. A1 - Kraume, M. A1 - Guthausen, G. A1 - Maiwald, Michael T1 - Neue Möglichkeiten für die Prozessanalytik mit gekoppelter 1H- und 19F-Medium-Resolution-NMR-Spektroskopie N2 - Die Entwicklung innovativer Medium-Resolution-NMR-Spektrometer eröffnet eine Reihe bemerkenswerter Applikationen für die Qualitätskontrolle, die akademische Ausbildung und die Prozessanalytik. Die Verwendung von Permanentmagneten erlaubt den Einsatz der NMR-Spektroskopie in industriellen Prozessumgebungen. KW - NMR KW - 1H KW - 19F KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Process analytical technology KW - IHM KW - PLS PY - 2014 U6 - https://doi.org/10.1002/cite.201450687 SN - 0009-286X SN - 1522-2640 VL - 86 IS - 9 SP - 1575 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-32560 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai A1 - Laurain, Clement A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modeling of simultaneous 19F-1H medium resolution NMR spectra for online reaction monitoring N2 - Medium resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and process monitoring. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra were treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprised direct integration, automated line fitting, indirect hard modeling, and partial least squares regression. T2 - 10. Kolloquium Arbeitskreis Prozessanalytik CY - Gerlingen, Germany DA - 25.11.2014 KW - Online NMR spectroscopy KW - Data evaluation KW - Reaction monitoring KW - Indirect hard modeling PY - 2014 UR - http://arbeitskreis-prozessanalytik.de/images/stories/Veranstaltungen/Kolloquien/10_kolloquium_2014/tagungsband_10_kolloquium_ak_prozessanalytik_2014_hq-druck_f.pdf SP - P04, 24 EP - 25 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-38360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Laurain, Clement A1 - Meyer, Klas A1 - Kraume, M. A1 - Guthausen, G. A1 - Maiwald, Michael T1 - Simultaneous 19F-1H medium resolution NMR spectroscopy for online reaction monitoring N2 - Medium resolution nuclear magnetic resonance (MR-NMR) spectroscopy is currently a fast developing field, which has an enormous potential to become an important analytical tool for reaction monitoring, in hyphenated techniques, and for systematic investigations of complex mixtures. The recent developments of innovative MR-NMR spectrometers are therefore remarkable due to their possible applications in quality control, education, and process monitoring. MR-NMR spectroscopy can beneficially be applied for fast, non-invasive, and volume integrating analyses under rough environmental conditions. Within this study, a simple 1/16'' fluorinated ethylene propylene (FEP) tube with an ID of 0.04'' (1.02 mm) was used as a flow cell in combination with a 5 mm glass Dewar tube inserted into a benchtop MR-NMR spectrometer with a 1H Larmor frequency of 43.32 MHz and 40.68 MHz for 19F. For the first time, quasi-simultaneous proton and fluorine NMR spectra were recorded with a series of alternating 19F and 1H single scan spectra along the reaction time coordinate of a homogeneously catalysed esterification model reaction containing fluorinated compounds. The results were compared to quantitative NMR spectra from a hyphenated 500 MHz online NMR instrument for validation. Automation of handling, pre-processing, and analysis of NMR data becomes increasingly important for process monitoring applications of online NMR spectroscopy and for its technical and practical acceptance. Thus, NMR spectra were automatically baseline corrected and phased using the minimum entropy method. Data analysis schemes were designed such that they are based on simple direct integration or first principle line fitting, with the aim that the analysis directly revealed molar concentrations from the spectra. Finally, the performance of 1/16'' FEP tube set-up with an ID of 1.02 mm was characterised regarding the limit of detection (LOQ (1H) = 0.335 mol L-1 and LOQ (19F) = 0.130 mol L-1 for trifluoroethanol in D2O (single scan)) and maximum quantitative flow rates up to 0.3 mL min-1. Thus, a series of single scan 19F and 1H NMR spectra acquired with this simple set-up already presents a valuable basis for quantitative reaction monitoring. KW - NMR KW - 1H KW - 19F KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Process analytical technology PY - 2014 U6 - https://doi.org/10.1016/j.jmr.2014.10.007 SN - 1090-7807 SN - 0022-2364 VL - 249 SP - 53 EP - 62 PB - Elsevier CY - San Diego, Calif. AN - OPUS4-32008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Laurain, C. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modelling of simultaneous F-19-H-1 medium-resolution NMR spectra for online reaction monitoring N2 - Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and processmonitoring. In contrast to high-resolution onlineNMR (HR-NMR),MR-NMRcan be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture fromthe reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by 1H HR-NMR (500MHz) and 1H and 19F MRNMR (43MHz) as amodel system. The parallel online measurement is realised by splitting the flow,which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for 1H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. KW - NMR KW - 1H-NMR KW - 19F-NMR KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Automation KW - Process analytical technology KW - IHM KW - Indirect hard modeling KW - Chemometrics KW - PLS-R KW - Partial least squares regression PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/mrc.4216/abstract U6 - https://doi.org/doi:10.1002/mrc.4216 VL - 54 SP - 513 EP - 520 PB - John Wiley & Sons, Ltd CY - Hoboken, New Jersey, USA AN - OPUS4-36135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 U6 - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Meyer, Klas A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and high-throughput mass quantification of micro¬plastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermo-analytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - NIR KW - Soil KW - compost KW - PLSR PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546405 SN - 0957-0233 VL - 33 IS - 7 SP - 075801 EP - 075814 PB - IOP Publishing Ltd. CY - UK AN - OPUS4-54640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Braun, Ulrike A1 - Meyer, Klas A1 - Paul, Andrea T1 - Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - Mikroplastik KW - NIR KW - Sensor KW - Kompost KW - Multivariat PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552605 VL - 33 IS - 7 SP - 1 EP - 13 PB - IOP Publishing Ltd. CY - Bristol AN - OPUS4-55260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völzke, Jule L. A1 - Hodjat Shamami, Parya A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Meyer, Klas A1 - Weller, Michael G. T1 - High-Purity Corundum as Support for Affinity Extractions from Complex Samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application. KW - Corundum KW - Sapphire KW - Affinity chromatography KW - Antibodies KW - Self-assembled monolayers (SAM) KW - Polyglycerol KW - Dendrimer KW - Nonspecific binding (NSB) KW - Purification KW - Solid-phase extraction (SPE) PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559342 VL - 9 IS - 9 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Isabel A1 - Santolin, Lara A1 - Meyer, Klas A1 - Machatschek, Rainhard A1 - Bölz, Uwe A1 - Tarazona, Natalia A. A1 - Riedel, Sebastian L. T1 - Microbially synthesized poly(hydroxybutyrate-co-hydroxyhexanoate) with low to moderate hydroxyhexanoate content: Properties and applications N2 - Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nanoplastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-cohydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 – 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 ◦C to 126 ◦C, Tg 4 ◦C to − 5.9 ◦C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h. KW - Molecular Biology KW - General Medicine KW - Biochemistry KW - Structural Biology PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595636 VL - 263 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification N2 - qNMR is a valuable technique for metrological studies due to the uniformity of its signal response for all chemical species of an isotope of interest, which enables compound-independent calibration. However, protein quantification remained challenging as large molecules produce wide, low-intensity signals that reduce the already low sensitivity. Combining qNMR with the hydrolysis of protein samples into amino acids circumvents many of these issues and facilitates the use of NMR spectroscopy for absolute protein and peptide quantification.In this work, different conditions have been tested for quantifying aromatic amino acids and proteins. First, we examined the pH-based signal shifts in the aromatic region. The preferable pH depends on the selection of the amino acids for quantification and which internal standard substance should be used to avoid peak overlap. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, have been applied as internal standards. The quantification of amino acids from an amino acid standard, as well as from a certified reference material (bovine serum albumin), was performed. Using the first two suggested internal standards, recovery was ~ 97 % for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98 ± 2 and 88 ± 4 %, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - AAA KW - Protein hydrolysis KW - Metrology KW - Traceability KW - Reference materials KW - Internal standards KW - Calibration PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564520 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-56452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tchipilov, Teodor A1 - Meyer, Klas A1 - Weller, Michael G. T1 - Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification N2 - Hydrolysis of protein samples into amino acids facilitates the use of NMR spectroscopy for protein and peptide quantification. Different conditions have been tested for quantifying aromatic amino acids and proteins. The pH-dependent signal shifts in the aromatic region of amino acid samples were examined. A pH of 12 was found to minimize signal overlap of the four aromatic amino acids. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, were applied as internal standards. The quantification of amino acids from an amino acid standard was performed. Using the first two suggested internal standards, recovery was ~97% for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98% ± 2% and 88% ± 4%, respectively, at a protein concentration of 16 g/L or 250 µM. KW - Amino acid analysis KW - Aromatic amino acid analysis KW - AAA KW - AAAA KW - Protein hydrolysis KW - Hydrochloric acid KW - Metrology KW - Traceability KW - NIST KW - Reference materials KW - Internal standard KW - Calibration KW - Compound-independent calibration KW - Histidine KW - Tyrosine KW - Tryptophan KW - Phenylalanine KW - Terephthalic acid KW - Benzene-1,3,5-tricarboxylic acid KW - Bovine serum albumin (BSA) KW - Quantitative protein analysis KW - Phenylketonuria PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-570943 VL - 6 IS - 1 SP - 1 EP - 13 PB - MDPI CY - Basel, Schweiz AN - OPUS4-57094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569198 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Meyer, Klas A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant II - Calibration and prediction by Raman spectra N2 - The Collaborative Research Center InPROMPT aims to establish a novel process concept for the hydroformylation of long-chained olefins, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro-emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the temperature and concentration sensitive multi-phase system demands a continuous observation of the reaction to achieve an operational and economically feasible plant operation. For that purpose, we tested the potential of both NMR and Raman spectroscopy for process control assistance. The lab-scale experiments were supported by sampling for off-line GC-analysis as reference analytics. The results of the NMR experiments will be part of another contribution. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Prozess-Spektroskopie KW - Emulsions KW - Hydroformylation KW - Reaction monitoring KW - Raman spectroscopy PY - 2015 SP - 66 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea A1 - Meyer, Klas A1 - Ruiken, Jan-Paul A1 - Illner, M. A1 - Müller, D.-N. A1 - Esche, E. A1 - Wozny, G. A1 - Westad, Frank A1 - Maiwald, Michael T1 - Process spectroscopy in microemulsions — Raman spectroscopy for online monitoring of a homogeneous hydroformylation process N2 - A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions. KW - Raman KW - Online KW - Chemometrics KW - Hydroformylation KW - Mini-plant KW - Microemulsion PY - 2017 U6 - https://doi.org/10.1088/1361-6501/aa54f0 SN - 1361-6501 SN - 0957-0233 VL - 28 IS - 3 SP - 035502-1 EP - 035502-11 PB - IOP Publishing Ltd CY - UK AN - OPUS4-39032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Paul, Andrea A1 - Müller, D. A1 - Esche, E. A1 - Wozny, G. A1 - Maiwald, Michael T1 - Process spectroscopy in microemulsions - setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process N2 - Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed. KW - Online-spectroscopy KW - Quantitative NMR spectroscopy KW - Process analytical technology KW - Microemulsions PY - 2017 U6 - https://doi.org/10.1088/1361-6501/aa54f3 SN - 0957-0233 SN - 1361-6501 VL - 28 IS - 3 SP - 035501-1 EP - 035501-11 PB - IOP Publishing Ltd. AN - OPUS4-39091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Paul, Andrea A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Prozessanalytik für die moderne Verfahrenstechnik – Online-NMR- und -Raman-Spektroskopie im mizellaren Stoffsystem N2 - Homogen katalysierte Reaktionen sind wichtige Werkzeuge der chemischen Industrie. Milde Reaktionsbedingungen und hohe Selektivitäten führen zu einer energie- und ressourcenschonenden Produktion. Ein bedeutender Prozessschritt ist die Hydroformylierung. Hier kommen Kobalt- und Rhodiumkomplexe mit mehrzähnigen Liganden zum Einsatz, die zumeist in wässriger Lösung vorliegen. Die Anwendbarkeit beschränkt sich demnach auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Hydroformylierung KW - Prozessanalytik KW - Prozess-Spektroskopie KW - NMR-Spektroskopie KW - Raman-Spektroskopie KW - Mizellen PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/cite.201650219/epdf U6 - https://doi.org/10.1002/cite.201650219 SN - 1522-2640 VL - 88 SP - 1304 EP - 1317 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37316 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Paul, Andrea A1 - Wozny, G. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for hydroformylation miniplant I – Experimental setup and NMR reaction monitoring N2 - Hydroformylation represents an important homogeneous catalyzed process, which is widely used within chemical industry. Usually applied with simple alkenes like Propene and Butene aldehydes obtained from alkenes >C6 are relevant intermediates in production of plasticizers, surfactants and polymers. Today the active catalyst species is often based on valuable Rhodium complexes in aqueous solution. This implies the problem of limited water solubility of the reactands, which is acceptable for short chain lengths, but states a problem in case of higher alkenes. Along with that efficient separation and recycling of the catalyst becomes more complicated. There are different approaches tackling this problem, e.g., by using of salt formation in the BASF process or downstream distillation within the Shell process T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Wien, Austria DA - 30.11.2015 KW - Prozessanalytik KW - Process analytical technology KW - Emuslions KW - Hydroformylation KW - Online NMR spectroscopy KW - Reaction monitoring PY - 2015 SP - 51 EP - 51 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Klas A1 - Rademann, K. A1 - Panne, Ulrich A1 - Maiwald, Michael T1 - Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures N2 - Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures. KW - Quantitative NMR spectroscopy KW - Gas-phase NMR spectroscopy KW - Primary reference gas mixtures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S1090780716302518 U6 - https://doi.org/10.1016/j.jmr.2016.11.016 SN - 1090-7807 SN - 1096-0856 VL - 275 SP - 1 EP - 10 AN - OPUS4-38803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -