TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - King, R. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible Automation with compact NMR instruments N2 - Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions. T2 - 7th Annual PANIC Conference CY - Hilton Head Island, South Carolina, USA DA - 03.03.2019 KW - Online NMR Spectroscopy PY - 2019 AN - OPUS4-47715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Zientek, Nicolai A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). T2 - Eurosensors 2017 Conference CY - Paris, France DA - 03.09.2017 KW - Process Monitoring KW - Smart Sensors KW - CONSENS KW - Online NMR Spectroscopy KW - Mini-plant PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-415772 UR - http://www.mdpi.com/2504-3900/1/4/628 VL - 1 SP - 628 EP - 631 PB - MDPI CY - Basel AN - OPUS4-41577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Meyer, Klas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Ugly Spectra and Lousy interfaces – Challenges for Compact NMR Spectroscopy in Process Control N2 - With the introduction of advanced process analytical technology, the closeness of key process variables to their limits can be directly controlled and the product can be classified or even released in real time. Compact NMR instruments can make NMR spectroscopy accessible in industrial and harsh environments for process control. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Online NMR Spectroscopy KW - Smart Sensors KW - Industrie 4.0 KW - Reaction Monitoring PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/cite.201650243/full U6 - https://doi.org/10.1002/cite.201650243 SN - 1522-2640 VL - 88 SP - 1304 EP - 1317 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants N2 - Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-toaliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process Monitoring KW - CONSENS KW - Online NMR Spectroscopy KW - Process Analytical Technology KW - Process control KW - Hydration KW - EuroPACT PY - 2017 SP - 103 EP - 103 CY - Frankfurt a. M. AN - OPUS4-40231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael ED - Maiwald, Michael T1 - Validation report on NMR N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug and play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/ parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consensspire.eu). KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-435521 SP - 1 EP - 31 AN - OPUS4-43552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Paul, Andrea A1 - Ruiken, J.-P. A1 - Westad, Frank A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Online Spectroscopy in Microemulsions – A Process Analytical Approach for a Hydroformylation Mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands a continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of both online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by off-line GC-analysis as a reference method. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions in the transfer lines. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with high 1-dodecene content the formation of isomers as a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in both laboratory setup and mini-plant. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Microemulsions KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Online Raman Spectroscopy PY - 2017 SP - 64 EP - 64 CY - Frankfurt a. M. AN - OPUS4-40228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Kern, Simon T1 - NMR Spectroscopy for Online Monitoring and Process Control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control. T2 - Lonza Shared Best Practice Seminar CY - Visp, Switzerland DA - 26.02.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Compact NMR Spectroscopy KW - Quantitative NMR Spectroscopy PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -