TY - GEN A1 - Bernstein, Michael A1 - Diehl, Bernd W. K. A1 - Holzgrabe, Ulrike A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Monakhova, Yulia A1 - Schönberger, Torsten T1 - qNMR - The handbook N2 - Quantitative NMR (qNMR) has been around for a long time, but also has great potential to solve future problems in any quantitative analysis. As a primary method, it differs fundamentally from chromatographic methods: it is better described as a quantum mechanical balance. Succesful implementation of qNMR requires certain attention to detail. "qNMR - the handbook" is intended to be a guide for analysts to help understand the fundamental principles of NMR and the significant points relating to its implementation for quantitation. Regulatory considerations of qNMR adoption are explained. NMR fundamentals are explained to provide understanding. Together with many useful examples, the book is a compelling addition to the laboratory's reference library, providing all the tools that any practitioner should know to successfully implement qNMR. The authors are qNMR pioneers and come from a variety of backgrounds including business, government and academia. KW - Quantitative NMR spectroscopy KW - NMR spectroscopy KW - Handbook KW - qNMR PY - 2023 SN - 978-3-7568-7891-8 SN - 978-3-7583-8050-1 SP - 1 EP - 302 PB - BoD – Books on Demand CY - Norderstedt AN - OPUS4-59839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Meyer, Klas A1 - Kowarik, Stefan A1 - Westerdicky, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com SN - 978-3-9819263-5-4 SP - 615 EP - 620 PB - Research Publishing AN - OPUS4-52180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Meyer, Klas A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Kowarik, Stefan A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com AN - OPUS4-52181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - King, R. A1 - Maiwald, Michael T1 - Raw data of pilot plant runs for CONSENS project (Case study 1) N2 - In case study one of the CONSENS project, two aromatic substances were coupled by a lithiation reaction, which is a prominent example in pharmaceutical industry. The two aromatic reactants (Aniline and o-FNB) were mixed with Lithium-base (LiHMDS) in a continuous modular plant to produce the desired product (Li-NDPA) and a salt (LiF). The salt precipitates which leads to the formation of particles. The feed streams were subject to variation to drive the plant to its optimum. The uploaded data comprises the results from four days during continuous plant operation time. Each day is denoted from day 1-4 and represents the dates 2017-09-26, 2017-09-28, 2017-10-10, 2017-10-17. In the following the contents of the files are explained. KW - Process Analytical Technology KW - Multivariate Data Analysis KW - Nuclear Magnetic Resonance KW - Near Infrared Spectroscopy KW - Continuous Manufacturing KW - CONSENS PY - 2018 U6 - https://doi.org/10.5281/zenodo.1438233 PB - Zenodo CY - Geneva AN - OPUS4-48063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - King, R. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible Automation with compact NMR instruments N2 - Modular plants using intensified continuous processes represent an appealing concept to produce pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes, and it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and includes a compact Nuclear Magnetic Resonance (NMR) spectrometer for online quality monitoring as well as a new model-based control approach. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including ro-bust evaluation of sensor data. Here, we present alternatives for the quantitative determination of the analytes using modular, physically motivated models. These models can be adapted to new substances solely by the use of their corresponding pure component spectra, which can either be derived from experimental spectra as well as from quantum mechanical models or NMR predictors. Modular means that spec-tral models can simply be exchanged together with alternate reagents and products. Beyond that, we comprehensively calibrated an NIR spectrometer based on online NMR process data for the first time within an industrial plant. The integrated solution was developed for a metal organic reac-tion running on a commercial-scale modular pilot plant and it was tested under industrial conditions. T2 - 7th Annual PANIC Conference CY - Hilton Head Island, South Carolina, USA DA - 03.03.2019 KW - Online NMR Spectroscopy PY - 2019 AN - OPUS4-47715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Kern, Simon T1 - NMR Spectroscopy for Online Monitoring and Process Control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. The talk also generally covers current aspects of high-field and low-field online NMR spectroscopy for reaction monitoring and process control. T2 - Lonza Shared Best Practice Seminar CY - Visp, Switzerland DA - 26.02.2019 KW - Process Analytical Technology KW - Reaction Monitoring KW - Online NMR Spectroscopy KW - Compact NMR Spectroscopy KW - Quantitative NMR Spectroscopy PY - 2019 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-47453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Laboratory accreditation as a reliable indicator of technical competence for testing, calibration and measurement organizations – An introduction to ISO/IEC 17025 using the example of qNMR spectroscopy N2 - ISO/IEC 17025 is the worldwide quality standard for testing and calibration laboratories. It is the basis for accreditation by an accreditation body. The current version was published in 2018. Implementing ISO/IEC 17025 as part of laboratory quality initiatives offers both laboratory and business benefits, such as expanding the potential customer base for testing and/or calibration, increasing the reputation and image of the laboratory at national and international level, continuous improvement of the data quality and the effectiveness of the laboratory or creation of a good basis for most other quality systems in the laboratory sector, such as GxP. The main difference between a proper approach to analysis and a formal accreditation is shown in a targeted documentation, especially on the qualification of the personnel, the test equipment and the validation of the analytical methods. Using quantitative NMR spectroscopy as an example, it is shown how accreditation can be carried out and what documentation is required. In our case, we have described the procedure in an SOP ("Determination of the quantitative composition of simple mixtures of structurally known compounds with 1H-NMR spectroscopy") and supported it with a modular system of organizational and equipment SOPs. The special feature is that the accredited method is independent for the choice of the analyte and the matrix and therefore it is possible to operate with a single validated method. In our case, we have proposed three quality levels ("leagues") with different levels of analytical effort, which differ in their measurement uncertainty, in order to simplify the workflow and analysis design. T2 - 9th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 17.10.2021 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Accreditation KW - ISO 17025 KW - ISO/IEC 17025 KW - PANIC PY - 2021 AN - OPUS4-53564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to continuously flowing samples at higher temperatures or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is typically not designed for compensation of such effects. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements using an optical thermo-graphy setup, a model predictive control was set up to minimize any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, potentially extend the application of compact NMR instruments to flowing samples at higher temperature than the permanent magnet. T2 - 18. Kolloquium AK Prozessanalytik CY - Krefeld, Germany DA - 27.11.2023 KW - Thermostating KW - Benchtop-NMR KW - NMR spectroscopy KW - Process Analytical Technology PY - 2023 AN - OPUS4-58970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Temperature Control KW - Process Analytical Technology KW - Flow NMR PY - 2023 AN - OPUS4-58400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Bornemann-Pfeiffer, Martin A1 - Döring, T. A1 - Falkenstein, S. A1 - Kern, S. A1 - Maiwald, Michael T1 - Benchtop NMR spectroscopy in chemical manufacturing: From hardware field integration to data modeling N2 - The use of benchtop-NMR instruments is constantly increasing during the recent years. Advantages of being affordable, portable and easy-to-operate without the need for trained staff make them especially interesting for industrial applications in quality control. However, applications of NMR spectroscopy as an online PAT tool are still very rare but offer a huge potential for process optimization and control. A key task to exploit this potential is hardware field integration of the lab-instruments in a rough environment of a chemical plant. Additionally, developments in automation and data evaluation are mandatory to ensure a robust unattended operation with low maintenance requirements. Here, we show an approach of a fully automated analyzer enclosure considering explosion safety, field communication, as well as environmental conditions in the field. Temperature sensitivity is still a limitation of benchtop-NMR instruments in flow applications. Recent developments of manufacturers allow for limited operation at static temperature levels, however, a dynamic system for continuous operation is still not available. Using a prototype system offering a larger bore, active temperature shielding studies with thermostated air were performed evaluating the performance. Automated data evaluation of NMR spectra using a modular indirect hard modeling (IHM) approach showed good results and flexibility. A second data analysis approach based on artificial neural networks (ANN) was evaluated.Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously, offering new ways to simultaneously evaluating large numbers of different models. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 24.05.2023 KW - Field integration KW - Benchtop-NMR KW - Process Analytical Technology PY - 2023 AN - OPUS4-57560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Döring, T. A1 - Friedrich, Y. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Highly automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR or Raman spectroscopy). Based on experiences from earlier field studies an improved NMR analyzer enclosure setup was developed and built, including the option of a secondary method (e.g., optical spectroscopy). Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop-NMR KW - Process Analytical Technology KW - Chemical Production KW - NMR spetroscopy PY - 2023 AN - OPUS4-58398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Falkenstein, S. A1 - Friedrich, Y. A1 - Kern, Simon A1 - Korth, K. A1 - Maiwald, Michael T1 - Industrial applications of low-field NMR spectroscopy for process and quality control of silanes N2 - The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to additives for glass fiber industry, sealants, adhesives, coatings and paints to the modification of polymers. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control. NMR nuclei of interest for silane products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated. It was shown how it can extend the application range where existing technologies like NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to a lack of reference data. In a first case study the process of hydrolysis and condensation was observed using online NMR analysis. For this purpose, the substituents of a trialkoxysilane are first hydrolyzed by adding water and corresponding silanols are formed, which can then bind to materials via SiOH functions and crosslink to form siloxane units. Another case study was dealing with the kinetics of the cleavage of a cyclic silane compound. Online NMR analysis was used both in the laboratory and in the manufacturing plant. For this purpose, a fully automated containment system was used, which enables the use of a commercial NMR spectrometer in ATEX-environments. In the third case study presented, quantitative 1H-NMR spectra were acquired on product mixtures of a trialkoxysilane and other components such as organic stabilizers, organotin compounds, an aromatic amine and organic peroxides. An automatic evaluation method based on Indirect Hard Modeling (IHM) was developed. T2 - Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 19.10.2020 KW - Process Analytical Technology KW - NMR spectroscopy KW - Benchtop-NMR KW - Process-NMR PY - 2020 AN - OPUS4-51465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory Comparison of Low-Field NMR Spectrometers – Purities at 200 and 10 mmol/L - Preliminary Results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - 7th Practical Applications of NMR in Industry Conference (PANIC) CY - Hilton Head Island, SC, USA DA - 04.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory comparison of low-field NMR spectrometers – Purities at 200 and 10 mmol/L - Preliminary results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - BAM quality toolbox framework for qNMR N2 - Accreditation of analytical methods, either according to GxP or ISO regulations, requires a comprehensive quality management system. General quality documents are often already in place, which need to be extended by method-specific documentation. In this presentation we like to show an idea of a modular set of standard operating procedures (SOP) specifically developed meeting the requirements for quantitative NMR. The future goal is to collaborate with different accreditated NMR laboratories to compile a universal set of SOP and other quality documents that can be modified and used as a starting point for developing your own quality system for applications of qNMR in a regulated environment. T2 - ValidNMR Workshop at Practical Applications of NMR in Industry Conference (PANIC) CY - Online meeting DA - 22.10.2020 KW - ValidNMR KW - Validation KW - NMR spectroscopy KW - ISO 17025 KW - GxP PY - 2020 AN - OPUS4-51466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - USP qNMR Emerging Technologies Workshop & Roundtable CY - Online meeting DA - 17.11.2020 KW - Quantitative NMR spectroscopy KW - Benchtop-NMR KW - Process Analytical Technology PY - 2020 AN - OPUS4-51595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, L. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ACHEMA Pulse 2021 CY - Online meeting DA - 15.06.2021 KW - Process Analytical Technology KW - NMR spectroscopy KW - Benchtop-NMR PY - 2021 AN - OPUS4-52822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, S. A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous-Flow Production N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - DECHEMA Workshop "Sensorik für die Digitalisierung chemischer Produktionsanlagen" CY - Frankfurt am Main, Germany DA - 13.06.2022 KW - Compact NMR KW - Process Control KW - Modular Production KW - Process Analytical Technology PY - 2022 AN - OPUS4-55037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory Comparison of Low-Field NMR Spectrometers – Purities at 200 and 10 mmol/L N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 31.01.2019 KW - qNMR KW - Compact NMR spectroscopy KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2022 CY - La Jolla, CA, USA DA - 16.10.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-56090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -