TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Maiwald, Michael A1 - Meyer, Klas T1 - Calibration-Free Chemical Process and Quality Control Units as Enablers for Modular Production JF - Chemie Ingenieur Technik N2 - Modular chemical production is a tangible translation of the digital transformation of the process industry for specialty chemicals. In particular, it enables the speeding-up of process development and thus a quicker time to market by flexibly connecting and orchestrating standardised physical modules and bringing them to life (i.e., parameterising them) with digitally accumulated process knowledge. We focus on the specific challenges of chemical process and quality control, which in its current form is not well suited for modular production and provide possible approaches and examples of the change towards direct analytical methods, analytical model transfer or machine-supported processes. KW - Modular Production KW - Chemical Process Control KW - Process Analytical Technology KW - Digital Transformation KW - Industry 4.0 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517264 DO - https://doi.org/10.1002/cite.202000150 SN - 1522-2640 VL - 93 IS - 1-2 SP - 62 EP - 70 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments JF - Magnetic Resonance in Chemistry N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579219 DO - https://doi.org/10.1002/mrc.5379 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -